Exceptional service in the national interest

MELCOR Code Development Status EMUG 2018

Presented by Larry Humphries

<u>llhumph@sandia.gov</u>

SAND2018-4219 C

1

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., , for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

International Use of MELCOR

MELCOR Workshops & Meetings

- 2017 Asian MELCOR User Group (AMUG)
 - Hosted by KAERI (S Korea)
 - November 6– 8, 2017 (tentative)
 - MELCOR/MACCS Topics
- 2018 European MELCOR User Group (EMUG)
 - Hosted by University of Zagreb
 - Workshop on RN Package (April 25)
 - April 26-27, 2017
- 2018 CSARP/MCAP/MELCOR Workshop
 - CSARP (June 5-7), MCAP (June 7-8), Workshop (June 11-15)
 - Rockville, MD
 - General MELCOR workshop with some focused topics
- 2018 Asian MELCOR User Group (AMUG)
 - Hosted by CRIEPI (Japan)
 - August 2018
 - MELCOR/MACCS Topics

MELCOR Runtime and Robustness

- Code Corrections & Modeling Improvements
 - Corrections to reported bugs
 - Model reviews
 - Targeted efforts to improve code performance
 - Examination of calculations showing time step reduction scenarios.
- Code Performance Improvements
 - Improvement of runtime (for 100 hours) Rev. 5864 → Now
 - 1F1 4 day calc. = 4 day CPU → 500 hours calc. = 50 hours CPU
 - 1F3 4 day calc. = 8 days CPU → 500 hours calc. = ~150 hours CPU
 - Enabled extension of Fukushima simulation time
 - 100 hours => 500 hours
- Robustness Improvements
 - 2013 75% success rate
 - 2015 84% success rate
 - 2017 (Recent Sequoyah UA) 95% success rate

2018 Workshop Agenda (CSARP)

- Monday (MELCOR overview, Primer, SNAP, MELCOR I/O)
- Tuesday (CVH/FL, Data & Control, Containment, Heat Structures)
- Wednesday (HS, Vapor & Aerosols, COR, CAV/RN)
- Thursday (Validation, SFP, HTGR)
- Friday
 - Sodium Models
 - Lower Head modeling
 - Eutectics models
 - Modeling filters and using MACCS flow paths
 - Activity models
 - RN ESF Models

New Model Development Tasks (2014-2017)

Completed

- Fuel Rod Collapse Model (NRC)
- Homologous pump model (NRC)
- Multi-HS radiation enclosure model
- Aerosol re-suspension model
- Zukauskas heat transfer coefficient (external crossflow across a tube bundle)
- Core Catcher (multiple containment vessels)
- Multiple fuel rod types in a COR cell (NRC)
- Generalized Fission Product Release Model
- New debris cooling models added to CAV package (NRC)
 - Water-ingression
 - Melt eruption through crust
- Spreading model implemented into CAV package (NRC)
- Eutectics Model (NRC)
- RCIC Terry Turbine model (NRC)
- Miscellaneous models and code improvements (NRC)
 - LAG CF
 - MACCS Multi-Ring Release
 - Valve Flow Coefficient
 - Non-dimensional parameters
- In Progress or future
 - Vectorized Control Functions (NRC)
 - CONTAIN/LMR models for liquid metal reactors
 - CVH/FL Numerics (NRC)

surface defined

New Modeling for Top-Quenched Debris in Cavity

Ablation and generation of off-gases

- Quenching of the upper crust at the top of the corium debris can lead to a considerable density change (~18%volume) leading to cracking of crust
 - Water ingression reduces conduction path to molten pool and increases surface area of contact
- Molten corium extruded through crust by entrainment from decomposition gases as they escape through fissures and defects in the crust.
 - Enhance the coolability of the molten corium
 - by relocating enthalpy from the internal melt through the crust
 - more coolable geometry that is more porous and permeable to water

Pre 2015 MELCOR Best Practice Distance

- Water ingression will increase the contact surface area between water and the corium
- Decrease the conduction path length through the corium, both of which will enhance the heat transfer through the crust

$$Q = -A \cdot k \frac{dT}{dz} \sim -\frac{A}{d} k \Delta T \sim -\frac{A}{d} k \Delta T$$

- MELCOR best practice attempted to account for this effect by applying a thermal conductivity multiplier
 - Based on benchmarking against MACE tests
- MELCOR model development is focusing on improvements in the CAV package to capture water ingression and melt eruptions
 - New porous layer for debris relocating above crust
 - New porous crust layer
 - Dense crust layer

Enhanced Conductivity (2010)

CAV_U 9

...

5 BOILING value 10.0 6 COND.OX mult 5.0 7 COND.MET mult 5.0 8 HTRINT multip 1.0 9 HTRSIDE multip 1.0 Modified Enhanced Conductivity (2012)

CAV_U 10

...

5 BOILING value 10.0 6 COND.OX mult 1.0 7 COND.MET mult 1.0 8 HTRINT multip 5.0 9 HTRSIDE STAND 10 COND.CRUST 3.0 **Still current best practice**

Water Ingression (2015)

CAV_U 10

... 5 BOILING VALUE 10.0 6 COND.OX MULT 1.0 7 COND.MET MULT 1.0 8 COND.CRUST 1.0 9 WATINGR ON 10 ERUPT ON

MELCOR Terry Turbine Model(s) Overview

- Terry turbine pressure-stage model (rapid steam expansion across nozzles)
 - Isentropic steam expansion or analytical Wilson point approach to capture phase nonequilibrium effects
 - Back-pressure effects for either under-expanded or overexpanded flow
- Terry turbine compound velocity-stage model (impulse of steam on turbine rotor)
 - Interfaces to pressure-stage model
 - Predicts rotor torque from initial impingement of steam plus subsequent stages (reversing chambers)
- Turbo-shaft model
 - Rigid coupling of the turbine to the homologous pump model
 - Solves a torque-inertia equation to govern turbo-shaft speed

Helical Steam Generator (HSG) Heat Transfer Coefficients were implemented in MELCOR 2.2

Subroutines added for calculations of HSG heat transfer coefficients

- Subroutine HSGhtcSubcool for subcooled boiling
- Subroutine HSGhtcbl for two-phase flow
- Subroutine HSGhtcat for super-heated steam [Eq. (9)]

2.4 Correlation for secondary superheated steam flow (inside tubes)

The heat transfer coefficient for secondary superheated steam in a forced-convection condition is calculated in Eq. (9). Steam properties are used.

$$h = \frac{1}{26.2} \left(\frac{k}{d_i}\right) \frac{Pr}{(Pr^{2/3} - 0.074)} Re^{4/5} \left(\frac{d_i}{D_c}\right)^{1/10} \left[1 + \frac{0.098}{\{Re(\frac{d_i}{D_c})^2\}^{0.2}}\right] \quad \dots \text{ Eq. (9)}$$

Sensitivity Coefficients added for the user to adjust code calculation

ഹി	New Modeling
LCO	SQA
∎ E	Utilities

MELCOR Eutectic Model Overview

- Eutectics model has been in the code since M1.8.2
 - Eutectic model was not functioning since <u>at least M1.8.5</u>
 - UO2-INT and ZRO2-INT have been used to reduce melt temperature and modify enthalpy curves as an alternate approach
 - Applied globally to intact and conglomerate fields
 - Effective melt temperature was user specified with no default.
- Recent work was done to revive eutectic model.
 - Only applies to conglomerate
 - Liquefaction of solids in contact using calculated rates
 - Two candling routines were used depending on whether eutectics active
 - Routines were recently unified
 - Numerous calls to mixture enthalpy routines were reviewed and corrected.
 - Eutectics model undergoing beta testing
 - Passes all mass energy conservation tests
 - Validation testing with TMI & X-walk

New Modeling MELCOR U/Zr/O Ternary Phase Diagrams UO2/ZrO2 Quasi Binary Equilibrium Diagram 3100 K liquid 2900 K 2800 K Zr/ZrO, Quasi Binary Equilibrium Phase Diagram 2 phase 2900 K liquid 2 phase solid UO₂-ZrO₂ 2150 K liquefaction at solid ZrQ₂ UO_2 2800K 0 Zr_{O₂} $\alpha Zr(O)$ Ζr rapid (2800...) UO₂ ZrO (2900K)² oxidation (3100K) α ZrO (2200K) molten Zr **Breakout** U Zr 2400K α Zr(O)/UO2 Equilibrium Phase Diagram 3100 K liquid 2 phase 2673 K T > 1000K 2250 K solid UO_2 α Zr(O)

13

MELCOR Eutectic Temperature

5.00E+05

0.00E+00

0

UO2-INT/ZRO2-INT

- Melt temperature for UO2 & ZrO2 is the same for intact materials as it is for conglomerate.
- Does not depend on composition

Eutectic Model

- Melt temperature of intact material uses elemental melting points while conglomerate uses eutectic temperature
 - Liquefaction of solids in contact from calculated rates
- Melt temperature dependent on composition

The existing MELCOR eutectics model provides a framework from which a new MELCOR model may be constructed

1000

2000

Temperature [K]

3000

4000

MELCOR	New Moo SQA Utilitie		tic	Mod	del Input	
	Nev	v Input for the Eut	tectic	model		
		COR FUT 1 PairMelt	Т	f1	COR FUT 0 enable	S

1 'UO2/ZRO2' 2550.0 0.5

enables the model w/o additional records & uses defaults

PairMelt can be one of the following:

ZR/SS (or 1), ZR/INC (or 2), UO2/ZRO2 (or 3)

TM is the Solidus temperature for the eutectic pair

- F1 is the molar ratio of the first member in the pair at the eutectic temperature
- Obsolete input for activating eutectic model
 - COR MS IEUMOD
 - Message will indicate new input method.
 - ERROR: The Eutectics model is enabled on COR_EUT
- Interactive materials should not be used along with the eutectic model

TMI Melt Progression – Preliminary Results

- Compare two TMI-2 test cases
 - Eutectics point = 2550 K
 - Interactive UO2-INT/ZRO2-INT 2550 K
- Similarities but notable differences
 - Core damage
 - Greater for eutectics
 - Size of Molten pool
 - Early: Greater for interactive
 - Later: Greater for eutectics
 - Material relocating to lower plenum
 - Greater for interactive
- Results are preliminary

TMI Melt Progression – Preliminary Results

17

Cross-walk and Model Uncertainty

- Where validation data exists, codes give reasonable agreement
- During core degradation, codes diverge
 - Distinct core degradation models
 - ASTEC Melting only
 - MELCOR minimum porosity
 - MAAP molten-pool crust
- What can code development gain from this activity?
 - Potential reduction in MELCOR uncertainty
 - Uncertainty analyses capture the uncertainty of a particular code model but do not capture the uncertainty from the possible core degradation paradigms
 - Extend the domain of MELCOR to capture other code model paradigms

MELCOR- MAAP Cross-Walk Conclusions

- Cross-walk concluded that heat transfer degradation does not occur in MELCOR with decreasing debris bed porosity. This is wrong!
 - <u>Erroneous</u> statement from report: "MELCOR represents a particulate debris bed in terms of fixed diameter particles – additional debris does not accumulate within open volume and limit the heat transfer surface area"
- The MELCOR candling model calculates modified surface areas used for both oxidation and heat transfer
 - Similar to rodded geometry but modified for spheres
 - Oxidation and convective heat transfer use reduced surface areas:
 - ASURC Conglomerate
 - ASURY exposed intact surface area
 - Sensitivity coefficient used to set minimum surface area
 - SC1505(2) = 0.05 SOARCA Best Practice
 - Was 0.001 in M186
 - Currently 0.001 for M2.2 default

How Are they Used

- ASURT Convective Heat Transfer
- ASURI Radiation
- ASURI Intact component area
- ASURC, ASURY Oxidation

ASURT=ASURC+ASURY

MELCOR- MAAP Cross-Walk Blockages/Crucible

MAAP predicts large coherent blockage across core that occur almost instantaneous

- MELCOR predicts local blockages by ring due to candling and refreezing
- MELCOR predicts much smaller molten pool
- What causes such divergence?

Figure B-18 Comparison of Minimum Vertical Flow Area through Fuel Assemblies across the Radial Extent of Core

MELCOR- MAAP Cross-Walk Flow Resistance

- A lot of attention was focused on the fact that MELCOR does not completely block fluid flow where MAAP does
 - However, for blockages, large pressure drop result in greatly reduced flow
 - MELCOR sensitivity coefficients for flow blockage SC1505(1)
 - 0.05 for SOARCA Best Practice
 - 1e-5 for M2.2 default
 - Recent sensitivity studies demonstrated that this is a second order effect on results (little impact on melt mass)

- Vew Modeling SQA Utilities
 - Bigger difference: MELCOR cross-walk calculation assumed an effective UO2/ZRO2 melting temperature of 2800 K.
 - User specified parameter
 'SOARCA Best Practice'
 - Leads to much smaller blockages
 - Eutectic temperature would be much lower leading to more extensive blockages

XWALK- MELCOR (Original)

23

XWALK- MELCOR (UO2-INT/ZRO2-INT = 2550 K)

XWALK- MELCOR (Modified)

25

XWALK Hydrogen Generation Predicted

XWALK Steam Dome Temperature

- Previously, MELCOR predicted much higher temperature in steam dome
 - Higher energy advected to MSL
 - Energy 'bottled up' in the crucible/pool.
 - More likely to fail the MSL

Uncertainty Domain

28

Non-LWR Reactor Applications

- Advanced Technology Fuels (ATF)
- Non-LWR Reactors
 - HTGR
 - Sodium
 - Molten Salts

High Temperature Gas Reactor

- Reactor Components
 - PBR Reactor components
 - PMR Reactor Components
- Materials

New Modeling

MELCOR

- TRISO Fuel Modeling
 - Fission product release modeling
- Helium Treatment
- Graphite modeling
 - Oxidation Models
- Graphite Dust Modeling
 - Aerosol physics models
 - Turbulent Deposition
 - Resuspension
- Point Kinetics Model
- Steady state initialization and transient solution strategy

HTGR Reactor Components

Pebble Bed Reactors (PBR)

- A component representing the fueled part of a pebble fuel element, which includes UO₂ as the fuel material and graphite as the "extra fuel material"
- A two-sided, graphite reflector component.
- A radial fuel temperature profile (notions of peak and surface fuel temperature)
- Radial cell-to-cell conduction/radiation models in the core region (effective bed conductivity)
- Packed-bed flow correlations for friction factors, convection heat transfer through the pebble bed

Prismatic Reactors (PMR

- A component representing the fueled part of a fuel compact element, including UO₂ as the fuel material and graphite as the "extra fuel material"
- A two-sided, graphite reflector component
- A component representing the graphite hex blocks that are "associated" with fuel channels in block
- A logarithmic radial temperature profile associated with the hex blocks
- Radial cell-to-cell conduction/radiation heat transfer, account for hex block gas gap

MELCOR FP Release Model

Coolant Modeling Consideration Standia Laboratories

- Helium
 - An ideal gas approach was chosen as an acceptable approximation
 - expected < 1% error for anticipated temperature and pressure range of HTGRs</p>
- DTDZ Model
 - User specifies the flow direction to be down for HTGR application
- PBR
 - Coolant friction factor is for pebble bed (default Ergun equation) when PBR model is invoked
 - Achenbach or KTA correlation should be used for HTGR
 - Coolant heat transfer uses pebble bed heat transfer coefficients (user input modified KTA)
- Air Ingress scenarios
 - The counter-current stratified flow model enables the user to couple two such flow paths and compute momentum exchange of the single-phase, two-component, counter-current flow as consistent with correlations of Epstein and Kenton.

Graphite Modeling

- Oxidation of graphite by steam and air
 - The air oxidation rate is implemented as (Richards, 1987) $R_{OX} = 122.19 \exp\left(-\frac{20129}{T}\right)P^{0.5}$
 - The steam oxidation model is implemented as (Richards, 1988) $R_{OX,steam} = \frac{k_4 P_{H_2O}}{1 + k_5 P_{H_2}^{0.5} + k_6 P_{H_2O}} \qquad k_i = K_i \exp\left(-\frac{E_i}{RT}\right)$
 - Maximum rates limited by gaseous diffusion to surface
- Reaction Products
 - The air reaction produces CO/CO₂
 - Steam reaction produces CO and H₂
 - The CO/CO_2 mole ratio is given as (Kim and NO, 2006)

$$f_{CO/CO_2} = 7396e^{-69604/RT}$$

New Aerosol Physics Models

Turbulent deposition and deposition in bends

- Particle Diffusion Regime
 - Davies equation

$$V_d^* = \frac{3\sqrt{3}}{29\pi\tau_*^{1/3}}Sc^{-2/3} \tau_*^{1/3} + K\tau_*^2$$

Eddy Diffusion –Impaction Regime

$$V_d^* = \frac{3\sqrt{3}}{29\pi\tau_*^{1/3}}Sc^{-2/3} \tau_*^{1/3} + K\tau_*^2$$

K is determined empirically or from a Fick's law equation (Wood)

Inertia Moderated Regime

 $V_d^* =$

Deposition-velocity is either constant

$$\frac{f}{2}$$
 10 $\leq \tau_* < 270$

 Or may decrease with increasing dimensionless relaxation time

$$V_d^* = \frac{2.6}{\sqrt{\tau_*}} \left(1 - \frac{50}{\tau_*} \right) \qquad \tau_* \ge 270$$

- PUI Model for deposition in bends
 - Pui bend model
 - Merril's bend model
 - McFarland's bend model

Resuspension model

- All sections for which the lower section boundary particle diameter is greater than a critical diameter
- Critical diameter is calculated from gas flow conditions

$$D_{\text{crit}} = \frac{4 \times 10^{-5}}{\pi \tau_{\text{wall}}} \text{ (m), } \tau_{\text{wall}} = \frac{f \rho v^2}{2} \text{ (N/m^2)} f = \frac{0.0791}{\text{Re}^{0.25}}$$

- Uses CV velocity
- Critical diameter can be specified by user
 - Control function
 - Constant value
- Relaxation time for resuspension
- Reference
 - "Liftoff Model for MELCOR," Mike Young
- Example SAND2015-6119

To fully activate resuspension, specify a value of FractResuspend as 1.0, and let MELCOR determine the critical diameter: HS_LBAR 1. ! Left surface

HS_RBAR 1. ! Right surface

Point Kinetics Model

- Point kinetics for operating reactor applications
 - Model developed by UNM

$$\frac{dn}{dt} = \frac{\rho - \beta}{\Lambda} n + \sum_{i=1}^{6} \lambda_i C_i + S_0$$

$$\frac{dC_i}{dt} = \frac{\beta_i}{\Lambda} n - \lambda_i C_i$$

- Unconditionally stable over wide range of timesteps
 - Exponential matrix approximated with a 7th order Pade(3,3) function
- Temperature-dependent reactivity feedback from COR components
 - Fuel/Moderator/Reflector generalized weighting for spatially averaged feedback
- External reactivity insertion via control functions
 - Generalized and flexible

Simple Sample Problem

- Initial power level is 268 MW
- Control Function used to insert \$0.50 reactivity step at 1100s
- Doppler feedback from fuel and moderator
- PK Model turned on at 1000 s
- Example Input:

_	!	NTPCOR	RNTPCOR	ICFGAP	ICFFIS	CFNAME
_	COR_TP	NO	NO	NO	NO	

- ! trigger PK on at 1000s
- ! TINIT QINIT FUEL MODERATOR
- COR_PKM01 1000.0 2.68e8 UO2 GRAPH
 - ! EXTREACCF NEUSRCECF
- COR_PKM02 'Reactivity'

"Accelerated" Normal Operation (1)

- System Thermal Hydraulic
- Solve Diffusion Equation
 - Solve the diffusion equation using core cell component temperatures (temperature dependent diffusion coefficients)
 - Finite difference solver (DIF2) integrated into MELCOR
 - Track intact and failed particles
 - Output of the diffusion calculation is spatial distribution in the particles (kernel/buffer), graphite, and relative amounts released to the primary system (for each isotope from each core cell)
 - FP distribution and release rates are ultimately scaled using ORIGEN results for burnup (more accurate in terms of actual isotope inventory)

- FP/Dust Distribution in Primary System
 - MELCOR run for some problem time to establish distribution rates and patterns in the primary system (input is release to the coolant from previous step)
 - Dust deposition is also done at this stage

"Accelerated" Normal Operation (3)

- Example PBR400 Cs Distribution in Primary System
 - Scale to desired operating time
 - Use as initial condition for accident

High Temp Gas-Cooled Reactors

Existing Modeling Capabilities

- Helium Properties
- Accelerated steady-state initialization
- Two-sided reflector (RF) component
- Modified clad (CL) component (PMR/PBR)
- Core conduction
- Point kinetics
- Fission product diffusion, transport, and release
- TRISO fuel failure

Existing Modeling Gaps

- Graphite structure/surface interactions with aerosols and fission products
- New designs use UC_x fuels rather than UO₂
- Mechanistic, specific balance-of-plant models

- Graphite dust transport
 - Turbulent deposition, Resuspension
 - Basic balance-of-plant models (Turbomachinery, Heat exchangers)
 - Momentum exchange between adjacent flow paths (lock-exchange air ingress)
- Graphite oxidation

MELCOR/CONTAIN-LMR Implementation

- Phase 1 Implement sodium as replacement to the working fluid for a MELCOR calculation
 - Implement properties & Equations Of State (EOS) from the fusion safety database
 - Implement properties & EOS based on SIMMER-III
- Phase 2 Review of CONTAIN-LMR and preparation of design documents
 - Detailed examination of LMR models with regards to implementation into MELCOR architecture
 - Updating CONTAIN-LMR and CONTAIN2 to MELCOR development standard
- Phase 3 Implementation and Validation of:
 - Implementation of CONTAIN/LMR models into CONTAIN2
 - Sodium spray fires (ongoing)
 - Atmospheric chemistry (ongoing)
 - Sodium pool chemistry (ongoing)
- Phase 4 Implementation and Validation of:
 - Condensation of sodium
 - Sodium-concrete interactions (SLAM model)

Sodium Coolant in MELCOR 2.2

- Sodium Working fluid
 - Implement Sodium Equations of State (EOS)
 - Implement Sodium thermal-mechanical properties
- Two models implemented
 - Fusion safety database (FSD)
 - SIMMER database
- Sodium properties for FSD are mainly read from an input file, so it is easy to adapt for other liquid metal fluids
- Test problems have been created demonstrating model capability
- Some improvement for FSD database were made in the past FY

CONTAIN2-LMR Development

- CONTAIN2 is last version of CONTAIN development
 - Significant improvements over CONTAIN-LMR
 - CONTAIN-LMR only works for sodium problems
 - Available standard test sets for LWR applications
- Development of CONTAIN2-LMR
 - Port all sodium models from CONTAIN-LMR
 - Allows to run both LWR and sodium reactor problems
- Verification same sets as in CONTAIN-LMR
 - Two condensable option and atmospheric chemistry model test problems
 - Experiments for pool and spray fires –AB5
 - Sandia SLAM experiments for sodium-concrete interactions (TBD)

Sandia National

laboratories

Spray Fire Chemistry

- Based on NACOM spray model from BNL
 - Input requirement: fall height, mean diameter and source
 - Internal droplet size distribution (11 bins) from Nukiyama-Tanasama correlation
 - Reactions considered:
 - (S1) 2 Na + $\frac{1}{2}O_2 \rightarrow Na_2O_2$,
 - (S2) 2 Na + $O_2 \rightarrow Na_2O_2$
 - Fixed ratio of peroxide and monoxide $\left(\frac{1.3478 \cdot F_{Na_2O_2}}{1.6957 0.3479 \cdot F_{Na_2O_2}}\right)$
 - Tracked quantities include:
 - Mass of Na (spray, burned, pool), O₂(consumed), Na₂O₂+ Na₂O(produced)
 - Energy of reactions
- Plot Variables
 - NAC-SPR-NASM [KG] Total mass of sodium introduced into the cell,
 - NAC-SPR-NABM [KG] Total mass of sodium burned,
 - NAC-SPR-O2M [KG] Total mass of oxygen removed,
 - NAC-SPR-NA2O2 [KG] Total mass of aerosol Na2O2 added,
 - NAC-SPR-NA20 [KG] Total mass of aerosol Na20 added,
 - NAC-SPR-MP [KG] Total mass of sodium added to the pool,
 - NAC-SPR-EA [J] Total energy released to the atmosphere, and
 - NAC-SPR-EP [J] Total energy added to the pool.

Sodium Spray Fire Model

NAC_SPRAY – Sodium Spray Fire Model

Optional

This model enables the modeling of the sodium spray fire in a given control volume if the sodium spray source is given.

(1) NUM The number of control volumes to include this model

(type = integer, default = none, units = dimensionless)

The following data are input as a table with length NUM:

(1) NC Table row index.

(type = integer, default = none, units = none)

(2) CVHNAME The name of the CVH volume.

(type = character, default = none, units = none)

(3) HITE Fall height of sodium spray. Default is CVH height.(type = real, default = CVH volume height, units = m)

(4) DME Mean sodium droplet diameter.

(type = real, default = 0.001, units = m)

(5) FNA2O2 Fraction of sodium peroxide produced by the spray fire.

(type = real, default = 1.0, units = m)

(6) SOU-TYPE Sodium spray source type: TF or CF. Default is TF. Note that two tables are expected: mass and temperature/enthalpy

```
(type = character, default = TF, units = none)
```

(7) MASS-NAME Name of the TF or CF for the mass source.

(type = character, default = none, units = kg/s)

(8) THERM-NAME Name of the TF or CF for the temperature of the source.

(type = character, default = none, units = temperature)

Used to determine
 droplet terminal velocity

Pool Fire Chemistry

- Based on SOFIRE II code from ANL
 - Reactions considered:
 - $2 \text{ Na} + \text{O}_2 \rightarrow \text{Na}_2\text{O}_2$, 10.97 MJ/kg
 - $4 \text{ Na} + 0_2 \rightarrow 2 \text{ Na}_2 0$, 9.05 MJ/kg
 - Half of the heat produced by these reactions is assigned to the sodium pool, while the other half is assigned to atmospheric gases above the pool.
 - Reactions depend on the oxygen diffusion as: $D = \frac{6.4315 \times 10^{-5}}{P} T^{1.823}$
 - Input requirement:
 - F1 fraction of O₂ consumed for monoxide, F2 fraction of reaction heat to pool, F3 fraction of peroxide mass to pool, & F4 fraction of monoxide mass to pool
 - Tracked quantities:
 - Mass of Na(pool, burned), O₂(consumed), Na₂O₂+Na₂O(produced)
 - Energy of reactions
 - Plot Variables

NAC-PFI-O2MC [kg] cumulative O₂ consumed NAC-PFI-NABMC [kg]: cumulative Na consumed NAC-PFI-NA2O2MC [kg: Cumulative Na₂O₂ produced NAC-PFI-NA2OMC [kg]: Cumulative Na₂O produced NAC-PFI-EAC [J]: Cumulative energy to atmosphere NAC-PFI-EPC [J]: Cumulative energy to pool NAC-PFI-O2M [kg/s] rate of O₂ consumed NAC-PFI-NABM [kg/s]: rate of Na consumed NAC-PFI-NA2O2M [kg/s]: rate of Na₂O₂ produced NAC-PFI-NA2OM [kg/s]: rate of Na₂O produced NAC-PFI-EA [W]: rate of energy to atmosphere NAC-PFI-EP [J]: rate of energy to pool

Sodium Pool Fire

NAC_PFIRE – Sodium Pool Fire Model

Optional

This model allows the modeling of the sodium pool fire in a given control volume. A number of fraction inputs can be specified.

```
(1) NUM The number of control volumes to include this model
```

```
(type = integer, default = none, units = dimensionless)
```

The following data are input as a table with length NUM:

(1) NC Table row index.

```
(type = integer, default = none, units = none)
```

(2) CVHNAME The name of the CVH volume.

(type = character, default = none, units = none)

(3) FO2 Fraction of the oxygen consumed that reacts to form monoxide. 1-FO2 is the remaining oxygen fraction for the reaction to form peroxide.

(type = real, default = 0.5, units = none)

(4) FHEAT Fraction of the sensible heat from the reactions to be added to the pool. The balance will go to the atmosphere.

(type = real, default = 1.0, units = none)

(5) FNA2O Fraction of the Na_2O remaining in the pool. The balance will be applied to the atmosphere as aerosols.

(type = real, default = 1.0, units = none)

(6) FNA2O2 Fraction of the Na_2O_2 remaining in the pool. The balance will be applied to the atmosphere as aerosols.

(type = real, default = 0.0, units = none)

Atmospheric Chemistry

- A number of reactions have been considered:
 - Na(l) + H₂O (l) \rightarrow NaOH(a) + $\frac{1}{2}$ H₂
 - $2 \operatorname{Na}(g, l) + \operatorname{H}_2 O(g, l) \rightarrow \operatorname{Na}_2 O(a) + \operatorname{H}_2$
 - 2 Na(g, l, a) + $\frac{1}{2}O_2$ or $O_2 \rightarrow Na_2O(a)$ or $Na_2O_2(a)$
 - $Na_2O_2(a) + 2 Na(g, l) \rightarrow 2 Na_2O(a)$
 - $Na_2O(a) + H_2O(g, l) \rightarrow 2NaOH(a)$
 - $Na_2O_2(a) + H_2O(g, l) \rightarrow 2NaOH(a) + 0.5O_2$
- Kinetics of atmosphere gases are not explicitly modeled.
- All these reactions are assumed to occur in hierarchal order:
 - In the order listed above
 - By location of reactions
 - Atmosphere(g), aerosol, surfaces (i.e., HS)
- Outputs
 - Reaction number, reaction energy, byproducts (Na classes, H₂), gas and liquid consumed (Na, H₂O, O₂)

Sodium Fast Reactors

Existing Modeling Capabilities

- Sodium Properties
 - Sodium Equation of State
 - Sodium Thermo-mechanical properties
- Containment Modeling
 - Sodium pool fire model
 - Sodium spray fire model
 - Atmospheric chemistry model
 - Sodium-concrete interaction

Figure 33. Suspended Na Aerosol Mass - AB1 Figure 34. Suspended Na Aerosol Mass-AB1

Existing Modeling Gaps

- SFR Core modeling
 - Fuel thermal-mechanical properties
 - Fuel fission product release
 - Fission product transport modeling
 - FP speciation & chemistry
 - Bubble transport through a sodium pool
 - Core degradation models
 - SASS4A surrogate model
- Containment Modeling
 - Capability for having more than one working fluid
 - Vaporization rates of RNs from sodium pool surface
 - Radionuclide entrainment near pool surface during fires
 - Transport of FP in sodium drops
 - Hot gas layer formation during sodium fires.
 - Oxygen entrainment into a pool fire
 - Sodium water reactions
 - Sodium aerosol aging

Molten Salt Reactors

- Properties for LiF-BeF2 have been added
 - Equation of State
 - Current capability
 - Thermal-mechanical properties
 - Current capability
 - EOS for other molten salt fluids would need to be developed
 - Minor modeling gap
- Fission product modeling
 - Fission product interaction with coolant, speciation, vaporization, and chemistry
 - Moderate modeling gap
- Two reactor types envisioned
 - Fixed fuel geometry
 - TRISO fuel models
 - Current capability
 - Liquid fuel geometry
 - MELCOR CVH/RN package can model flow of coolant and advection of internal heat source with minimal changes.
 - Current capability
 - COR package representation no longer applicable but structures can be represented by HS package
 - Calculation of neutronics kinetics for flowing fuel
 - Significant modeling gap.

Future In-Vessel Retention Code Improvements

- Melting Lower Head
 - Addition of molten steel to debris
 - Similar to HS degassing model
 - Impact on focusing effect
 - Steel relocates to CAV for MCCI
 - Modify lower head thermal model for moving melt boundary
 - Adaptive vs fixed grid
 - Thinning of vessel wall
 - Effect on local stress
 - Improved diagnostics
- Control Rod Guide Tubes
 - Cooling effects
 - Penetration Failure Model
 - Review of LHF experiments and add strainbased model
 - Heavy Metal Layer?

Thickness of the reactor vessel wall SBO

Evaluation of heat-flux distribution at the inner and outer reactor vessel walls under the in-vessel retention through external reactor vessel cooling condition Jaehoon Jung, KAERI, January 2015

MELCOR 2.2 Code Release

MELCOR 2.2 Quicklook Overview of Model Changes in MELCOR 2.2

Volume I: User Guide

R&A Complete SAND2017-0445 O Volume II: Reference Manual

R&A Complete SAND2017-0876 O

Future MELCOR Manual Updates

SAND2015-6693 R
MELCOR Computer
Code Manuals
Vol. 3: MELCOR Assessment Problems
version 2.1./54/ 2015
Date Published: August 2015
Prepared by: L L. Humphries, D. L.Y. Louie, V. G. Figueroa, M. F. Young, S. Weber, K. Ross, J. Phillips, and R. J. Jun*
Sandia National Laboratories Operated for the U.S. Department of Energy
Albuquerque, New Mexico 87185
H. Esmaili, Nuclear Regulatory Commission Project Manager
Prepared for Division of System Analysis Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission Washington, DC 20555-0001
NRC Job Code V6343

Currently employed at the Federal Authority for Nuclear Regulation in the United Arab Emirates

Volume III: Assessments

R&A Complete SAND2015-6693 R By September 2018 Demo PWR plant deck Demo BWR plant deck **COR/CVH** Nodalization Containment DBA Numerical Variance **Steady State Initialization** By September 2019 FL/CVH Modeling **Uncertainty Analysis** Spent Fuel Pool Modeling Radionuclide Class Modeling **MELCOR/MACCS** Integration Troubleshooting MELCOR runtime issues Lower Head Modeling Heat Structure Modeling Cavity Related Modeling

Volume IV: Modeling Guide

Objectives for Modeling Guide

- User Guidance
 - MELCOR has a steep learning curve and guidance is needed to help new users learn how to develop input decks.
 - Generate non-proprietary plant decks
 - BWR, PWR, SFP
 - Volume IV references these sample plant decks
 - Provide meaningful insights, recommendations, demonstrations of modeling methodology in a formal report for many commonly asked questions across much of the model space
 - Describe pitfalls and methods for troubleshooting and assessing results.
 - How to address code execution problems
 - How to review results to know the code is giving reasonable results
- Best Practices
 - Provide guidelines for appropriate use of the code in modeling severe accidents.
 - Recommended models and model options

Cases in MELCOR Assessment Report - SAND2015-6693 R

MELCOR ANALYTIC ASSESSMENT

- Saturated Liquid Depressurization
- Adiabatic Expansion of Hydrogen
- Transient Heat Flow in a Semi-Infinite Heat Slab
- Cooling of Heat Structures in a Fluid
- Radial Heat Conduction in Annular Structures
- Establishment of Flow

MELCOR ASSESSMENTS AGAINST EXPERIMENTS

- Analysis of ABCOVE AB5 and AB6 Aerosol Experiments
- Analysis of ACE Pool Scrubbing Experiments
- Analysis of AHMED 1993 NaOH Experiments
- Analysis of the Bethsy 6.9c Experiment (ISP-38)
- Analysis of Containment System Experiment for Spray –A9 Test

- Analysis of the Cora 13 (ISP 31) Experiment
- Analysis of Aerosol Behavior from the Demona-B3 Experiment
- Analysis of Level Swell from the General Electric Large Vessel Blowdown and Level Swell Experiment – 5801-13
- Containment Analysis from the JAERI Spray Experiments
- Analysis of LACE LA-4 Experiment
- Analysis of LOFT LP-FP-2 Experiment
- Analysis of Critical Flow from the Marviken CFT-21 and JIT-1 Experiments
- Analysis of Marviken-V Aerosol Transport Test (ATT-4)
- Analysis of NTS Hydrogen Burn Combustion Tests
- Analysis of the Nuclear Power Engineering Corporation (NUPEC) Mixing Tests
- Analysis of the PHEBUS FPT-1

Experiment

- Analysis of the PHEBUS FPT-3 Experiment
- Analysis of the POSEIDON Integral Experiments under Hot Pool Conditions
- Analysis of STORM Aerosol Mechanical Deposition Tests
- Melt Coolability and Concrete Interaction Experiments
 - CCI-1, CCI-2, and CCI-3

NEW ASSESSMENTS IN NEXT REVISION

- LACE LA3 (Turbulent Deposition)
- HDR-V44
- ISP-45 (QUENCH-6)
- TMI-2 Accident
- STORM (resuspension phase)
- ABCOVE AB1 and AB5 (Sodium)

SNAP Upgrade (Upcoming)

- Input Processing
 - Support input for new models
 - Recent update to UG would be a good start but we should review again for missing input
 - Some features may be difficult to implement – vector CFs
 - Review nomenclature used
 - Possible reorganization of interface
 - COR package input is inefficient

- Post-processing
 - Remove idiosyncrasies -
 - Requirement to load a med file in order to inherent COR dimensions
 - Improve interface
 - Adding a profile plot is extremely laborious
 - Extending graphical output
 - Update COR bean to show more than just component degradation
 - temperature, oxidation rate, Zr mass, flow, etc.
 - Update MELCOR & PTFREAD for BWR first

Questions?

Backup Slides