

An attempt to introduce a resuspension model in MELCOR 1.8.6 for fusion applications

Authors: Bruno Gonfiotti, Sandro Paci

University of Pisa – Department of Civil and Industrial Engineering

Email: bruno.gonfiotti@for.unipi.it

9th European MELCOR User's Group (EMUG) – Madrid, 6 - 7 April 2017

Introduction – The problem

- During normal plasma operation the <u>erosion</u> of the "plasma facing components" occurs;
- The <u>dusts</u> formed tend to <u>deposit onto the</u> <u>divertor surface</u>;
- In case of an <u>In-vessel LOCA</u>, these dusts may resuspend;
- <u>Resuspended dusts may be transported</u> to the VV Pressure Suppression System (VVPSS);
- Define the <u>maximum amount of mobilized dust</u> is an issue of main concern;
- MELCOR v1.8.6 for fusion applications hasn't <u>a resuspension model</u>;
- In MELCOR v2.2 for LWRs a resuspension is implemented (Force Balance Model);
- An attempt to introduce a resuspension model in MELCOR was performed.

Introduction – The problem

- During normal plasma operation the <u>erosion</u> of the "plasma facing components" occurs;
- The <u>dusts</u> formed tend to <u>deposit onto the</u> <u>divertor surface</u>;
- In case of an <u>In-vessel LOCA</u>, these dusts may resuspend;
- <u>Resuspended dusts may be transported</u> to the VV Pressure Suppression System (VVPSS);
- Define the <u>maximum amount of mobilized dust</u> is an issue of main concern;
- MELCOR v1.8.6 for fusion applications hasn't <u>a resuspension model;</u>
- In MELCOR v2.2 for LWRs a resuspension is implemented (Force Balance Model);
- An attempt to introduce a resuspension model in MELCOR was performed.

Selection of a resuspension model

Different models are available in literature, but they can be all subdivided into

- ✤ Why the <u>ECART model</u>?
 - ➢ It is <u>simple</u>;
 - ➢ It was <u>already validated</u> for fusion applications.
- How it works?

9th European MELCOR User's Group (EMUG) – Madrid, 6 - 7 April 2017

Adhesive forces (F_{ad})

F_{g}	Gravitational
F _c	Cohesive (intermolecular attraction)
F _a	Friction adhesive (sliding and rolling resistance)

Aerodynamic forces (F_{ae})

F_{d}	Drag (shear stress on wall)
F_{c}	Burst (breaking of laminar sub-layer

Resuspension occurs when:

Adhesive forces (F_{ad}) < Aerodynamic forces (F_{ae})

If $\Delta F(r) = F_{ae} - F_{ad}$, the resuspension rate (λ) can be expressed as shown

- The model was implemented through <u>Control Functions (CFs)</u>;
- ✤ About <u>200 CFs</u> are needed for each CV;
- The model is <u>not identical to the ECART one</u> because correlations needing iterative calculations were substituted with explicit correlations;
- The aerosol population is subdivided into only <u>5 groups</u>;
- The CFs calculate only the resuspension rate for each group, and the resuspended mass is computed at the end of the calculation through a dedicated Microsoft Excel ® file;
- The model runs independently from the RN package;
- Only the total amount of resuspended mass is computed. <u>The fate of the resuspended particles is not tracked</u>.

Several tests were selected to be part of the validation matrix. The selection was based on:

- > Tests employed to validate the model implemented in <u>ECART</u>;
- > Tests employed to validate the model implemented in MELCOR v2.2;
- > Tests referring to the peculiar "*plant conditions*".

Validation

	EC.	MEL.	PL.	N° of tests	Tests characteristics	Ref.
STORM	~	~		5	 Atmospheric pressure Multi-layer deposit 	[1] [2] [3]
ART	~	r		7	 Atmospheric pressure Multi-layer deposit 	[1] [4]
Reeks & Hall		~		7	 Atmospheric pressure Monolayer deposit 	[1] [5]
Braaten		~		141*	 Atmospheric pressure Monolayer deposit 	[1] [5]
STARDUST	~		r	41*	 Pressure increasing from 1 kPa to 100 kPa Multi-layer deposit 	[6] [7]
AWTS-II			r	5	 Pressure below atmospheric one (constant) Multi-layer deposit 	[8]
BISE			۷	30	 Atmospheric pressure Mono-layer deposit (?) 	[9]
TOTAL		236				

* Several tests were executed with the same boundary conditions.

Validation – STARDUST tests

9th European MELCOR User's Group (EMUG) – Madrid, 6 - 7 April 2017

* <u>Simple nodalization;</u>

Flow velocity tuned through the <u>cross-sectional flow area</u> <u>of the tank</u>.

Inlet	Pressurization rate [kPa/s]	Range of velocities impacting the tray [m/s]	Velocities investigated [m/s]
А	0.3	1 – 5	1 – 2.5 – 5
А	3	5 – 10	5 – 7.5 – 10
В	0.3	50 – 100	50 – 75 – 100
В	3	200 – 300	200 - 250 - 300

Tank

Tray

* Simple nodalization;

- ✤ Tank is <u>adiabatic</u>;
- Air Inlet
 Air close of <u>velocities</u> impacting the tray calculated through <u>CFD calculations</u>;
 - Flow velocity tuned through the <u>cross-sectional flow area</u> <u>of the tank</u>.

Group	GMD [m]	Normalized W mass
1	2.15e-7	0.009
2	3.22e-7	0.104
3	4.30e-7	0.257
4	5.37e-7	0.329
5	6.45e-7	0.300

Inlet CV

Α

Β

Validation – STARDUST tests

Validation – STARDUST tests

EXPERIMENTAL - MELCOR v1.8.6 - MELCOR v.1.8.6 (10 GMD) - ECART

- > At the end of the tests, large tungsten agglomerates were found;
- Probably, tungsten agglomerates while rolling onto the tray;
- Increasing the tungsten size of 10 times improves the MELCOR predictions.

- An attempt to introduce a <u>resuspension model in MELCOR 1.8.6</u> for fusion applications was shown;
- The model was derived from the model implemented in the <u>ECART code</u>;
- The model was implemented by mean of <u>CFs;</u>
- Small variations were introduced to <u>avoid iterative calculations</u>;
- The model was <u>validated</u> against several tests;
- For the <u>STARDUST tests</u>, the model showed a <u>good agreement</u> with the experimental data, <u>but not all the phenomena that may occur during</u> <u>resuspension are simulated by the model</u>;
- For almost all the <u>other validation tests</u>, the model showed <u>conservative</u> <u>estimations</u>.

* Improve the model

- Reduce the <u>CFs</u> needed. Some CFs are now employed for diagnostic purposes;
- Introduce an <u>agglomeration model</u> in function of the "Drag-Burst forces" ratio;
- Increase the <u>aerosol groups to 10</u> (instead of 5);
- Create CFs for the <u>calculation of the resuspended mass</u> (avoid Microsoft Excel ® file);
- Coupling with the RN package: Inject the resuspended mass during the time step Δt_n as an aerosol source during the time step Δt_{n+1};
- > If needed, further expand the *validation matrix*.

Thank you for your attention

Bruno Gonfiotti

Email: <u>bruno.gonfiotti@for.unipi.it</u>

9th European MELCOR User's Group (EMUG) – Madrid, 6 - 7 April 2017

For further information on the ECART model see: ECART User's Manual Part 2 – Code Structure and Theory.

- [1] M.F. Young, "Liftoff Model for MELCOR", *report n*° *SAND2015-6119*, Sandia National Laboratories, 2015.
- [2] A. Bujan, L. Ammirabile, A. Bieliauskas, B. Toth, "ASTEC V1.3 code SOPHAEROS module validation using the STORM experiments", *Progress in Nuclear Engineering*, vol. 52, 2010, pp 777 – 788.
- [3] A. de los Reyes Castelo, J. A. Capitão, G. De Santi, "International Standard Problem 40 Aerosol deposition and Resuspension", *report NEA/CSNI/R(99)4*, OECD/NEA, 1999.
- [4] L. Biasi, A. de los Reyes, M. W. Reeks, G. F. de Santi, "Use of a simple model for the interpretation of experimental data on particle resuspension in turbulent flows", *Aerosol Science*, vol 32, 2001, pp 1175 1200.
- [5] M. W. Reeks, D. Hall, "Kinetic model for particle resuspension in turbulent flows: theory and measurements", *Aerosol Science*, vol 32, 2001, pp 1 – 31.

- [6] M. T. Porfiri, N. Forgione, S. Paci, A. Rufoloni, "Dust mobilization experiments in the context of the fusion plants – STARDUST facility", *Fusion Engineering and Design*, vol. 81, 2006, pp 1353 – 1358.
- [7] S. Pupeschi, "Analysis of the STARDUST dust resuspension tests using ECART and STAR-CCM+ codes", *Bachelor degree thesis* – *University of Pisa*, 2009.
- [8] A. Rondeau, J. Merrison, J. J. Iversen, S. Peillon, J.-C. Sabroux, P. Lamaitre, F. Gensdarmes, E. Chassefière, "First experimental results of particle re-suspension in a low pressure wind tunnel applied to the issue of dust in fusion reactors", *Fusion Engineering and Design*, vol 98 99, 2015, pp 2210 2213.
- S. Peillon, A. Roynette, C. Grisolia, F. Gensdarmes, "Resuspension of carbon dust collected in Tore Supra and exposed to a turbulent flow: Controlled experiments and comparison", *Fusion Engineering and Design*, vol. 89, 2014, pp 2789 – 2796.

Adhesive forces (F_{ad})

F_g	Gravitational	$F_g = \frac{4\pi r_p^3}{3}\rho_p g$
F _c	Cohesive (intermolecular attraction)	$F_c = 2Hr_p\gamma$
F _a	Friction adhesive (sliding and rolling resistance)	$F_a = 0.2(F_g\gamma^3 + F_c)$

Aerodynamic forces (F_{ae})

F_{d}	Drag (shear stress on wall)	$F_d = \tau_0 \pi r_p^2 \chi^{2/3}$
F _b	Burst (breaking of laminar sub-layer)	$F_b = 4.21 \rho_g \chi \nu^2 \left(\frac{d_p \rho_g U^*}{\mu}\right)^{2.31}$

- * r_{p} , d_{p} , and ρ_{p} particle radius, diameter, and density, respectively;
- γ and χ collision and the aerodynamic shape factors, respectively;
- ✤ H empirical coefficient: 10⁻⁶ N/m;
- * v_f (often called v), μ , and ρ_g flow velocity, the dynamic viscosity of the fluid, and the fluid density, respectively.
- * τ_0 shear stress at the wall: $\tau_0 = 0.125\lambda \rho_g v_f^2$
- * λ flow resistance coefficient:

$$\frac{1}{\sqrt{\lambda}} = -0.6 \log_{10} \left(\left(\frac{\varepsilon}{3.7D} \right)^{3.33} + \left(\frac{6.9}{Re} \right)^3 \right)$$

- ✤ D hydraulic diameter;
- ε surface roughness;
- ✤ U^* friction velocity, calculated as:

$$J^* = \sqrt{\frac{0.125\lambda\rho_g v_f^2}{\rho_g}}$$