



Adolf Rýdl, Terttaliisa Lind, Leticia Fernandez :: Paul Scherrer Institut

# MELCOR modeling of FP scrubbing in experiments and in integral accident scenarios

EMUG meeting, Madrid, April 2017



#### Outline

- Scrubbing modeling with MELCOR/SPARC for experiments
  - POSEIDON experiments, for general SPARC behavior testing (older TEPCO-TOSHIBA-HITACHI experiments, for boiling conditions)
  - thermal-hydraulic behavior by MELCOR in experiments
  - aerosol retention with default/non-default SPARC settings
- Scrubbing modeling with MELCOR for integral "Fukushima-like" scenarios and FP behavior
  - thermalhydraulics
  - WW Mark-I scrubbing related phenomena for Cs and iodine compounds
  - with the same default/non-default MELCOR/SPARC settings
- Conclusions and outlook



## SPARC and MELCOR/SPARC model and POSEIDON test series

- SPARC (MELCOR/SPARC) --a relatively complex code written for aerosol retention calculations in WW water of a BWR (iodine vapors included)
  - what it is in MELCOR now is -to our knowledge- the same as original SPARC
- as all currently used scrubbing models, SPARC is rather old -yet, its validation is not great
- our aim was to use SPARC for scrubbing experiments having conditions prototypical to severe accidents and then in the same way for an integral BWR accident based on Fukushima U3; stand-alone BUSCA code used as well for comparison
- PSI POSEIDON test series chosen as first
  - very well documented
  - prototypic (high) flow rates of gases used in
    POSEIDON as well as other relevant conditions



PAUL SCHERRER INSTITUT

#### 

### Experimental parameters in POSEIDON tests and calculated DFs

| Test          | Gas Flow Rate (kg/h) | Steam Mass Fraction | Inlet Pressure (bar) | Gas Temp. (ºC) | Pool Temp. (ºC) | Pool Height (m) | Inlet Aerosol Flow<br>Rate (g/s) | Outlet Steam Mass<br>Fraction | Outlet AMMD (µm) | Outlet GSD   | DF exp                | calc. BUSCA | calc. DF (MELCOR /<br>SPARC defaults) | calc. DF (non-<br>default "sparger"<br>option) |
|---------------|----------------------|---------------------|----------------------|----------------|-----------------|-----------------|----------------------------------|-------------------------------|------------------|--------------|-----------------------|-------------|---------------------------------------|------------------------------------------------|
| PA06          | 142.5                | 0.553               | 1.45                 | 243.0          | 86.9            | 1.0             | 0.0118                           | 0.518                         | 0.36             | 1.64         | 7.3 ±1.4              | 5.5         | 1.2                                   | 12                                             |
| PA07          | 142.5                | 0.553               | 1.42                 | 267.7          | 86.3            | 0.3             | 0.0119                           | 0.506                         | 0.36             | 1.5          | 6.6 ±2.3              | 2.1         | ~1                                    | ~1.8                                           |
| PA08          | 145.1                | 0.563               | 1.63                 | 212.9          | 86.8            | 4.0             | 0.0096                           | 0.525                         | 0.28             | 1.34         | 21.4 ±6.7             | 183         | ~2                                    | ~240                                           |
| PA11          | 137.9                | 0.043               | 1.46                 | 256.1          | 75.3            | 2.0             | 0.0152                           | 0.237                         | 0.24             | 1.6          | 5.4 ±1.4              | -           | 1.05                                  | 14                                             |
| PA12          | 124.9                | 0.0                 | 1.36                 | 237.7          | 71.8            | 1.0             | 0.0161                           | 0.249                         | 0.3              | 1.55         | 3.4 ±0.6              | 2.8         | ~1                                    | ~5.5                                           |
| PA15          | 94.3                 | 0.719               | 1.30                 | 305.2          | 85.4            | 1.0             | 0.0091                           | 0.475                         | 0.31             | 1.59         | 4.9 ±1.0              | -           | ~1.4                                  | ~13                                            |
| PA17*         | 91.8                 | 0.747               | 1.30                 | 310.8          | 88.0            | 1.0             | 0.0571                           | 0.539                         | 0.46             | 1.62         | 12.3 ±6.2             | 12          | 1.7                                   | 40                                             |
| PA15<br>PA17* | 94.3<br>91.8         | 0.719               | 1.30<br>1.30         | 305.2<br>310.8 | 85.4<br>88.0    | 1.0<br>1.0      | 0.0091                           | 0.475<br>0.539                | 0.31<br>0.46     | 1.59<br>1.62 | 4.9 ±1.0<br>12.3 ±6.2 | - 12        | ~1.4                                  | ~13<br>40                                      |

\* inlet AMMD =0.54 µm in PA17, 0.3 µm in all other tests

PAUL SCHERRER INSTITUT

0.08

0.06

0.04

0

0

5

10

gas flow rate (kg/s) 70

### typical results of POSEIDON simulations thermalhydraulics in PA08

- simple model used, similar to Sandia **MELCOR** test problems
- PA08: 4m of water, 86°C, inlet steam mass fraction 0.56, gas flow rate ~40g/s, 212°C, inlet aerosol concentration ~0.2g/m3, inlet AMMD=0.3µm
- thermalhydraulics very well captured by **MELCOR for all POSEIDON tests**





## Decontamination Factors in POSEIDON simulations by MELCOR/SPARC

- trends in calculated DFs the same in all POSEIDON tests: the same effect of submergence, steam content, particle size
- by far the most important sensitivity in calculations :
  - default MELCOR/SPARC options versus non-default "quencher" (multihole) vent option
- large differences in predicted DF values whereas the thermohydraulics was calculated to be the same between the 2 runs; this same picture seen in calculations of all POSEIDON tests
- differences lie in description of the initial bubble formation for various vent types (original EPRI correlations)
- for all other calculated tests than PA08, which is of highest submergence, the agreement with experiment for DF values (with non-default SPARC settings) far better than in PA08





## BWR integral source-term calculations with MELCOR/SPARC

- differences seen in simulations of experiments may have significant impact on integral source term predictions for severe accidents at BWRs (e.g., with relevant systems at FU2 versus those at FU3)
  - DF~2 versus DF~200 (as in PA08 with high submergence) represents efficiency of 50% versus 99.5% of the aerosol mass scrubbed
- try to check it -with Cs and I- for "Fukushima-like" BWR SBO scenarios: prolonged operation of relevant core cooling systems => "Fukushima-like"



- our Fukushima-like sequence based on detailed FU3 simulations by PSI(\*)
- at about 40h into the accident, things starting to "go definitively wrong" :
  - RPV water level below BAF
  - first hydrogen
  - beginning of FP release

(\*) L.Fernandez, J.Birchley, Annals of Nuclear Energy, 83 (2015) 193–215



## Comparison of the same BWR sequences with different MELCOR/SPARC settings

- calculated Fukushima-like scenarios with active containment venting operation (\*NUTHOS-11 paper) defined such as to allow for the FP environmental release -and Cs and I isotopes in particular- only via WetWell water (Suppression Chamber) and then through ventilation lines
  - starting to deviate from FU3 case at about these 40h
- no head flange DryWell leakage, no other containment failures
- enables to compare more easily the FP retention in WetWell for different MELCOR/SPARC settings in an integral scenario
- again, like for experiments, calculated thermalhydraulics very similar between the 2 cases
  - R01: defaults in MELCOR/SPARC

#### – R02: non-default MELCOR/SPARC "sparger/quencher" vent











what would happen if also vapors are scrubbed? (directions taken from an old Sandia CSARP presentation)



effect is huge, as one would expect,

but not a single word is written about this model in the code manuals!



### Conclusions and outlook

- presented work consists of
  - aerosol scrubbing modeling by MELCOR/SPARC for POSEIDON experiments
  - FP transport modeling in an integral severe accident (BWR Mark-I, "Fukushima-like") with focus on Cs (I) behavior and its retention/scrubbing in WW
- MELCOR/SPARC calculates reasonably the thermalhydraulics in POSEIDON experiments (including steam condensation); aerosol retention calculations, on the other hand, were very sensitive to changes in default SPARC input options
  - proper use of different EPRI correlations in different areas of interest should be examined
- BWR "Fukushima-like" sequence and FP retention in WW
  - predicted aerosol DFs in WW sensitive the same way as for the experiments
  - FP releases from RPV to WW are discrete events, at least in this type of a scenario -other factors than just DFs can play a role in retention (timing, ...)
  - to understand the retention of Cs (or FPs in general) and its behavior one needs to study
    every given accident sequence in detail
    here MELCOR is quite helpful
  - calculations also confirmed again that FP speciation is crucial (e.g., CsOH versus Cs2MoO4 in terms of their volatility)
  - we need to check MELCOR/SPARC treatment of FP vapors other than those of iodine
- work continues, first with looking at boiling conditions for aerosol scrubbing (TEPCO-TOSHIBA-HITACHI tests) and then with some newer Japanese scrubbing tests



### Wir schaffen Wissen – heute für morgen





### **MELCOR** nodalization





#### WW water temperature





consists of four tasks:

- (1) analyses of an extended duration BWR sequence
  - integral scenario (up to approximately 6 days) with source term evaluations
  - generic Mark-I BWR "Fukushima-like" sequence
- (2) FP transport with special focus on Cs and iodine behavior in the integral BWR scenarios
- (3) pool scrubbing models tested in experiments and in the integral BWR scenarios
  - WW Mark-I scrubbing related phenomena
- (4) iodine radiochemistry modeling relevant to iodine containment behavior at accidents
  - small scale PSI test recalculations with dedicated tools (PSIodine, IODE part of ASTEC code(?), ...)

#### WORK STARTED THIS YEAR with

- pool scrubbing modeling
  - for POSEIDON test series (and TEPCO-TOSHIBA-HITACHI experiments for boiling conditions -not yet finished)
  - and for corresponding WW scrubbing modeling in a "Fukushima-like" BWR scenario
- Cs and iodine transport modeling in the same integral scenario