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• Scrubbing modeling with MELCOR/SPARC for experiments

− POSEIDON experiments, for general SPARC behavior testing  (older TEPCO-

TOSHIBA-HITACHI experiments, for boiling conditions) 

− thermal-hydraulic behavior  by MELCOR in experiments

− aerosol retention with default/non-default SPARC settings

• Scrubbing modeling  with MELCOR for integral "Fukushima-like" scenarios  and 

FP behavior

− thermalhydraulics

− WW Mark-I scrubbing related phenomena  for Cs and iodine compounds 

− with the same default/non-default MELCOR/SPARC settings

• Conclusions  and outlook
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SPARC and MELCOR/SPARC model and
POSEIDON test series

• SPARC (MELCOR/SPARC)  --a relatively complex 

code written for aerosol retention calculations in 

WW water of a BWR  (iodine vapors included)

− what it is in MELCOR now is –to our 

knowledge- the same as original SPARC 

• as all currently used scrubbing models, SPARC is 

rather old   -yet, its validation is not great

• our aim was to use SPARC for scrubbing 

experiments having conditions prototypical to 

severe accidents and then in the same way for an 

integral BWR accident based on Fukushima U3; 

stand-alone BUSCA code used as well for 

comparison

• PSI POSEIDON test series chosen as first

− very well documented 

− prototypic (high) flow rates of gases used in 

POSEIDON as well as other relevant conditions 

POSEIDON Tank: 5m height,

1m diameter
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Experimental parameters in POSEIDON tests
and calculated DFs

Test
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PA06 142.5 0.553 1.45 243.0 86.9 1.0 0.0118 0.518 0.36 1.64 7.3  ±1.4 5.5 1.2 12

PA07 142.5 0.553 1.42 267.7 86.3 0.3 0.0119 0.506 0.36 1.5 6.6  ±2.3 2.1 ~1 ~1.8

PA08 145.1 0.563 1.63 212.9 86.8 4.0 0.0096 0.525 0.28 1.34 21.4  ±6.7 183 ~2 ~240

PA11 137.9 0.043 1.46 256.1 75.3 2.0 0.0152 0.237 0.24 1.6 5.4  ±1.4 - 1.05 14

PA12 124.9 0.0 1.36 237.7 71.8 1.0 0.0161 0.249 0.3 1.55 3.4  ±0.6 2.8 ~1 ~5.5

PA15 94.3 0.719 1.30 305.2 85.4 1.0 0.0091 0.475 0.31 1.59 4.9  ±1.0 - ~1.4 ~13

PA17* 91.8 0.747 1.30 310.8 88.0 1.0 0.0571 0.539 0.46 1.62 12.3  ±6.2 12 1.7 40

* inlet AMMD =0.54 µm   in PA17, 0.3 µm  in all other tests
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typical results of POSEIDON simulations –
thermalhydraulics in PA08

• simple model used, similar to Sandia 

MELCOR test problems

• PA08:  4m of water, 86°C, inlet steam mass 

fraction 0.56, gas flow rate ~40g/s, 212°C, 

inlet aerosol concentration ~0.2g/m3, inlet 

AMMD=0.3μm     

• thermalhydraulics very well captured by

MELCOR for all POSEIDON tests
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Decontamination Factors in POSEIDON 
simulations by MELCOR/SPARC

• trends in calculated DFs the same in all POSEIDON tests:  the same  effect of submergence, steam 

content, particle size

• by far  the most important sensitivity in calculations :

− default MELCOR/SPARC options versus non-default "quencher" (multihole) vent option  

• large differences in predicted DF values whereas the thermohydraulics was calculated to be the 

same between the 2 runs;  this same picture seen in calculations of all POSEIDON tests

• differences lie in description of the initial bubble formation for various vent types (original EPRI 

correlations)   

• for all other calculated tests than PA08,  which is of highest submergence, the agreement with 

experiment for DF values (with non-default SPARC settings) far better than in PA08

PA08 test calculation (4m of water)
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BWR integral source-term calculations
with MELCOR/SPARC

• differences seen in simulations of experiments may have significant 

impact on integral source term predictions  for severe accidents at

BWRs (e.g., with relevant systems at FU2 versus those at FU3)

− DF~2 versus DF~200 (as in PA08 with high submergence) represents 

efficiency of 50% versus 99.5%  of the aerosol mass scrubbed 

• try to check it  -with Cs and I- for "Fukushima-like" BWR SBO scenarios:   

prolonged operation of relevant core cooling systems  => "Fukushima-like"

• our Fukushima-like sequence based on
detailed FU3 simulations by PSI(*)

• at about 40h into the accident, things 

starting to "go definitively wrong" :

- RPV water level below BAF

- first hydrogen

- beginning of FP release 

(*) L.Fernandez, J.Birchley,
Annals of Nuclear Energy, 83 (2015) 193–215
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Comparison of the same BWR sequences with 
different MELCOR/SPARC settings

• calculated Fukushima-like scenarios with active containment venting operation (*NUTHOS-11 

paper)  defined such as to allow for the FP environmental release -and Cs and I isotopes in 

particular- only via WetWell water (Suppression Chamber) and then through ventilation lines

− starting to deviate from FU3 case at about these 40h

• no head flange DryWell leakage, no other containment failures

• enables to compare more easily the FP retention in WetWell for different MELCOR/SPARC 

settings in an integral scenario

• again, like for experiments, calculated thermalhydraulics very similar between the 2 cases

− R01: defaults in MELCOR/SPARC  

− R02: non-default MELCOR/SPARC “sparger/quencher” vent
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Cs behavior and retention in WW
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CsI behavior and retention in WW (contd)
CsOH behavior shows similar picture
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CsOH behavior and retention in WW (contd)
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what would happen if also vapors are scrubbed?
(directions taken from an old Sandia CSARP presentation)
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• presented work consists of

− aerosol scrubbing modeling by MELCOR/SPARC for POSEIDON experiments

− FP transport modeling in an integral severe accident (BWR Mark-I, "Fukushima-like")  

with focus on Cs (I)   behavior and its retention/scrubbing in WW

• MELCOR/SPARC calculates reasonably the thermalhydraulics in POSEIDON experiments 

(including steam condensation);  aerosol retention calculations, on the other hand, were 

very sensitive to changes in default SPARC input options 

− proper use of different EPRI correlations in different areas of interest should be examined 

• BWR  "Fukushima-like" sequence and FP retention in WW

− predicted aerosol DFs in WW sensitive the same way as for the experiments

− FP releases from RPV to WW are discrete events, at least in this type of a scenario  -other 

factors than just DFs can play a role in retention (timing, ...)

− to understand the retention of Cs (or FPs in general) and its behavior one needs to study 

every given accident sequence in detail        -here MELCOR is quite helpful

− calculations also confirmed again that FP speciation is crucial  (e.g., CsOH versus 

Cs2MoO4 in terms of their volatility)

− we need to check MELCOR/SPARC treatment of FP vapors other than those of iodine

• work continues, first with looking at boiling conditions for aerosol scrubbing (TEPCO-

TOSHIBA-HITACHI tests)  and then with some newer Japanese scrubbing tests
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Wir schaffen Wissen – heute für morgen

thank you

for your atttention

work sponsored

by SwissNuclear
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MELCOR nodalization
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WW water temperature
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(1) analyses of  an extended duration  BWR sequence     

− integral scenario (up to approximately 6 days) with source term evaluations

− generic Mark-I BWR "Fukushima-like"  sequence

(2) FP transport with special focus on Cs and iodine behavior in the integral BWR

scenarios   

(3) pool scrubbing models tested in experiments and in the integral BWR scenarios

− WW Mark-I scrubbing related phenomena 

(4) iodine radiochemistry modeling relevant to iodine containment behavior at 

accidents 

− small scale PSI test recalculations  with dedicated tools (PSIodine, IODE part of 

ASTEC code(?), …)

WORK STARTED THIS YEAR  with 

• pool scrubbing modeling 

− for POSEIDON test  series  (and  TEPCO-TOSHIBA-HITACHI experiments for boiling 

conditions -not  yet finished)

− and for corresponding  WW scrubbing modeling in  a "Fukushima-like" BWR scenario

• Cs and iodine transport modeling in  the  same integral scenario  

consists of four tasks:


