

MELCOR 1.8.6 Simulation of Severe Accidents Simultaneously Ongoing in the Reactor Core and in the Spent Fuel Pool of the VVER-1000 Type of Reactor

Miroslav Kotouč

UJV Rez

8th Meeting of the "European MELCOR User Group" Imperial College, London, Great Britain, March 6–7, 2016

Simultaneous SAs in the RPV and SFP

Sequencing calculations

- MELCOR: allows only for 1 set of parameters for the COR, DCH, RN etc.
- 2 <u>integral</u> calculations of SAs:
 - reactor (RPV)
 - spent fuel pool (SFP)

saving sources (EDF) of

- 1. masses
- 2. enthalpies
- 3. FPs
- 1 <u>stand-alone</u> calculation of the CTMT response considering the saved sources

1. Integral calculation of SA in RPV

EDF package

 ASCII/binary data files

2. Integral calculation of SA in SFP

EDF package

 ASCII/binary data files

3. Stand-alone calculation in CTMT

EDF package

 ASCII/binary data files

Issue: FP source (inventory & decay heat)

decay heat is correct

MELCOR: user input for FPs (DCH)

	<u>RPV</u> : dchnem0300 'Cs' 275.032281
	dchnem0301 0.0 56332.0 0.0018 56323.0 0.028 56195.0 0.142 55658.0
initial inventory	<u>SFP</u> :
decay heat history	dchnem0300 'Cs' 705.373230
	 dchnem0349 28638169.452 397.16 29034540.786 396.15 29433636.323 395.13

Only 1 DCH input set allowed!

IE: ~340 days from shutdown

- FPs for CTMT <u>stand-alone</u> calculation DCH input for:
 - 1. SFP (sources of *M* and *DCH* of FPs from the *integral* SFP simulation are correct)
 - FP sources from the *integral* RPV simulation are
 - 1.left as they are=> mass is correct,decay heat is too low
 - 2. multiplied by an *appropriate factor* => *mass* is too high, *decay heat* is correct
 - 2. **RPV** (sources of **M** and **DCH** of FPs from the <u>integral</u> **RPV** simulation are **correct**)
 - FP sources from the *integral* SFP simulation are
 - 1.left as they are=> mass is correct,decay heat is too high
 - 2. multiplied by an *appropriate factor* => *mass* is **too low**,

FP source – appropriate factor (max. release)

DCH_{RPV_class#_@max-release} / DCH_{SFP_class#_@max-release}

FP source – appropriate factor (ratio)

DCH_{RPV_class#_@max-release} / DCH_{SFP_class#_@max-release}

Axial level # [-]

Radial ring # [-]

	1	2	3	4	5	6	7
28	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
27	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
26	4.46E-03	3.53E-03	5.75E-03	6.09E-03	9.59E-03	5.23E-03	
25	9.87E-03	7.81E-03	1.27E-02	1.35E-02	2.12E-02	1.16E-02	
24	1.11E-02	8.78E-03	1.43E-02	1.52E-02	2.39E-02	1.30E-02	
23	1.10E-02	8.72E-03	1.42E-02	1.51E-02	2.37E-02	1.29E-02	
22	1.05E-02	8.27E-03	1.35E-02	1.43E-02	2.25E-02	1.23E-02	
21	9.92E-03	7.85E-03	1.28E-02	1.36E-02	2.13E-02	1.16E-02	
20	9.47E-03	7.49E-03	1.22E-02	1.29E-02	2.04E-02	1.11E-02	
19	9.25E-03	7.32E-03	1.19E-02	1.26E-02	1.99E-02	1.09E-02	
18	9.27E-03	7.34E-03	1.20E-02	1.27E-02	1.99E-02	1.09E-02	
17	9.52E-03	7.53E-03	1.23E-02	1.30E-02	2.05E-02	1.12E-02	
16	9.90E-03	7.84E-03	1.28E-02	1.35E-02	2.13E-02	1.16E-02	
15	1.02E-02	8.10E-03	1.32E-02	1.40E-02	2.20E-02	1.20E-02	
14	9.52E-03	7.53E-03	1.23E-02	1.30E-02	2.05E-02	1.12E-02	
13	4.68E-03	3.71E-03	6.04E-03	6.40E-03	1.01E-02	5.50E-03	
12	0.00E+00						
11	0.00E+00						
10	0.00E+00						
9	0.00E+00						
8	0.00E+00						
7	0.00E+00						
6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
4	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
3	0.00E+00	0.00E+00	0.00E+00				
2	0.00E+00	0.00E+00					
1	0.00E+00						

RPV model – overall nodalization

RPV model – CVs + core cells

RPV model – core cells + FU

RPV model – core cells + FU + CL

RPV model – core cells + FU + CL + SS

RPV model – core cells + NS

SFP model – situation

SFP model – FAs distribution (B02)

SFP model – FAs distribution (B01)

SFP model – FAs distribution (B03)

SFP model – FPs distribution

	1	2	3	4	5	6	7	8	9
20	0.00E+00								
19	0.00E+00								
18	0.00E+00	0.00E+00	1.18E-02	1.11E-04	3.09E-05	8.84E-03	6.77E-05	4.14E-06	
17	0.00E+00	0.00E+00	2.98E-02	2.81E-04	7.84E-05	2.24E-02	1.72E-04	1.05E-05	
16	0.00E+00	0.00E+00	4.17E-02	3.93E-04	1.10E-04	3.14E-02	2.40E-04	1.47E-05	
15	0.00E+00	0.00E+00	4.69E-02	4.41E-04	1.23E-04	3.52E-02	2.70E-04	1.65E-05	
14	0.00E+00	0.00E+00	4.61E-02	4.34E-04	1.21E-04	3.47E-02	2.65E-04	1.62E-05	
13	0.00E+00	0.00E+00	4.36E-02	4.10E-04	1.15E-04	3.27E-02	2.51E-04	1.53E-05	
12	0.00E+00	0.00E+00	4.12E-02	3.88E-04	1.08E-04	3.10E-02	2.37E-04	1.45E-05	
11	0.00E+00	0.00E+00	3.94E-02	3.71E-04	1.04E-04	2.96E-02	2.27E-04	1.39E-05	
10	0.00E+00	0.00E+00	3.85E-02	3.63E-04	1.01E-04	2.90E-02	2.22E-04	1.36E-05	
9	0.00E+00	0.00E+00	3.84E-02	3.62E-04	1.01E-04	2.89E-02	2.21E-04	1.35E-05	
8	0.00E+00	0.00E+00	3.94E-02	3.71E-04	1.04E-04	2.96E-02	2.26E-04	1.39E-05	
7	0.00E+00	0.00E+00	4.09E-02	3.85E-04	1.08E-04	3.08E-02	2.35E-04	1.44E-05	
6	0.00E+00	0.00E+00	4.20E-02	3.95E-04	1.10E-04	3.16E-02	2.42E-04	1.48E-05	
5	0.00E+00	0.00E+00	3.79E-02	3.57E-04	9.97E-05	2.85E-02	2.18E-04	1.34E-05	
4	0.00E+00	0.00E+00	2.05E-02	1.93E-04	5.40E-05	1.54E-02	1.18E-04	7.23E-06	
3	0.00E+00	0.00E+00	6.89E-03	6.49E-05	1.81E-05	5.18E-03	3.96E-05	2.43E-06	
2	0.00E+00								
1	0.00E+00								

Radial ring # [-]

B02

B03

20

Axial level # [-]

SFP model – overall nodalization

SFP model – CVs + core cells

SFP model – core cells + FU

SFP model – core cells + FU + CL

SFP model – core cells + FU + CL + SS

SFP model – core cells + NS

SFP model – core cells + CN

Detailed CTMT model (138 CVs)

RPV accident progress: 0.05 h (1/11)

Situation right after reactor shutdown – intact core, full water inventory

RPV accident progress: 1.67 h (2/11)

Water level decrease due to boil-off, still before PC depressurization

RPV accident progress: 1.97 h (3/11)

Onset of core components degradation, right after PC depressurization (water inlet)

RPV accident progress: 2.85 h (4/11)

• Water inventory make-up thanks to HAs, high void fraction visible (intensive boiling)

RPV accident progress: 3.81 h (5/11)

Water inventory already boiled off, massive debris formation

RPV accident progress: 4.50 h (6/11)

Core debris relocation, molten pools formation

RPV accident progress: 4.63 h (7/11)

Debris relocation into LP – right after core support plate collapse

RPV accident progress: 5.03 h (8/11)

RPV accident progress: 7.35 h (9/11)

RPV accident progress: 8.38 h (10/11)

Material relocation from LP – right after RPV LH failure

RPV accident progress: 228 h (11/11)

_		 3	4	5	6]	7
hs	08 07 06		2 £			9	
fl	09						
mpz	12						
mn)	14					1	
mp1	15						
I,	17 16						
ba	18						
115	19						
nc	21					-	
SS	23						
	24						
cl	25						
1 G	27 26						
fu	28						

SFP accident progress: 0.0 d (1/4)

hs

SFP accident progress: 7.4 d (2/4)

SFP accident progress: 9.1 d (3/4)

• Further decrease of water level in the B01 pool

hs

SFP accident progress: 10 d (4/4)

CTMT response: pressure

~ units of days

CTMT response: temperature (in RH)

~ units of days

CTMT response: H₂ concentration (in RH)

~ units of days

CTMT response: Shapiro diagram (in RH)

Conclusions (RPV + SFP)

Simulation of simultaneous SAs in RPV & SFP is feasible

- using the MELCOR EDF module and
- properly defining sources into the CTMT of
 - mass
 - enthalpy
 - FP

Attention must be paid to DCH module definition

• in order to obtain correct FP *masses* or *decay heat*

Careful scenario definition – timing

- EOC more conservative from the point of view of FPs in the core
- BOC better concurrence of SAs expected

Conclusions (other matters)

MCAP-2015 opened issues

- CORijjDX record
 - PD axial relocation through *intact CN/levels with DX=1.0*; VFALL influence
- LH/penetration failure
 - Logical CF defined as ICFLHF does not trigger failure
- Differed restart
 - Calculation is not the same when restarting from MELRST
- PD/MP2 mass oscillation
 - Unrealistic & unphysical switching between *particulate debris/metallic molten pool*

HSs sequencing during 1.8.6 => 2.1 conversion (film tracking)

- M 1.8.6 "donor" and "acceptor" defined explicitly for HSs
- M 2.1 "donor" and "acceptor" stem from HSs ordering
- But! SNAP re-orders the HSs according to their numbers, which may be in contradiction with the film flow direction

Thank You for Your Attention

UJV GROUP

