MELCOR 1.8.6 Simulation of Severe Accidents Simultaneously Ongoing in the Reactor Core and in the Spent Fuel Pool of the VVER-1000 Type of Reactor

Miroslav Kotouč
UJV Rez

8th Meeting of the “European MELCOR User Group”
Imperial College, London, Great Britain, March 6–7, 2016
Simultaneous SAs in the RPV and SFP

- **VVER-1000/320 (Temelin NPP)**
- **IE: SBO at the EOC**
 - **RPV** – 300 EFPDs
 - Total decay heat: **235.5 MW**
 - **SFP** – 340 days since ¼ of core unloaded + older FAs (several years)
 - Total decay heat: **1.261 MW**
- **H₂ mitigation system - PARs**
 - 27x NIS22 (SA)
 - 41x NIS44 (SA)
 - 22x Areva FR90/1-150 (DBA)
- **Spray operation**
 - 1. no spray, 2. CSS, 3. fire spray
- **Simulation duration: 10 days**
Sequencing calculations

- MELCOR: allows only for 1 set of parameters for the COR, DCH, RN etc.
- **2 integral** calculations of SAs:
 - reactor (RPV)
 - spent fuel pool (SFP)
- saving sources (EDF) of
 1. masses
 2. enthalpies
 3. FPs
- **1 stand-alone** calculation of the CTMT response considering the saved sources
1. Integral calculation of SA in RPV

- EDF package
 - ASCII/binary data files
2. Integral calculation of SA in SFP

- EDF package
 - ASCII/binary data files
3. Stand-alone calculation in CTMT

- EDF package
 - ASCII/binary data files
Issue: FP source (inventory & decay heat)

- **MELCOR: user input for FPs (DCH)**

 RPV:

  ```
dchnem0300 'Cs' 275.032281
  dchnem0301 0.0 56332.0 0.0018 56323.0 0.028 56195.0 0.142 55658.0
  ```

- **initial inventory**
- **decay heat history**

- **Only 1 DCH input set allowed!**

- **FPs for CTMT *stand-alone* calculation – DCH input for:**

 1. **SFP** (sources of M and *DCH* of FPs from the *integral* SFP simulation are **correct**)

 - FP sources from the *integral* RPV simulation are

 1. left as they are => *mass* is correct, *decay heat* is too low
 2. multiplied by an *appropriate factor* => *mass* is too high, *decay heat* is correct

 2. **RPV** (sources of M and *DCH* of FPs from the *integral* RPV simulation are **correct**)

 - FP sources from the *integral* SFP simulation are

 1. left as they are => *mass* is correct, *decay heat* is too high
 2. multiplied by an *appropriate factor* => *mass* is too low, *decay heat* is correct
FP source – *appropriate factor (max. release)*

\[\frac{DCH_{RPV_class\#_@max\text{-}release}}{DCH_{SFP_class\#_@max\text{-}release}} \]

Example: release of class #2 – alkali metals (Li, Na, K, Rb, Cs, Fr, Cu)

RPV *integral* analysis:

\[t = 3.84 \text{ h} \]
FP source – *appropriate factor (ratio)*

- \(\frac{DCH_{\text{RPV,cl#2}}}{DCH_{\text{SFP,cl#2}}} \)

Example: release of class #2 – alkali metals (Li, Na, K, Rb, Cs, Fr, Cu)

RPV integral analysis:

- \(t = 3.84 \text{ h} \)
- \(DCH_{\text{RPV,cl#2}} = 1114 \text{ W/kg} \)
- \(R = \frac{1114}{351.5} = 3.17 \)

SFP integral analysis:

- \(t = 340 \text{ d} \)
- \(DCH_{\text{SFP,cl#2}} = 351.5 \text{ W/kg} \)
RPV model – FAs & FPs distribution

![Diagram of RPV model with radial and axial levels, showing distribution of FAs and FPs.](image)
RPV model – overall nodalization
RPV model – CVs + core cells
RPV model – core cells + FU
RPV model – core cells + FU + CL
RPV model – core cells + FU + CL + SS
RPV model – core cells + NS
SFP model – situation

B02

B01 B03

0.721 MW 0.540 MW
SFP model – FAs distribution (B02)
SFP model – FAs distribution (B01)
SFP model – FAs distribution (B03)
SFP model – FPs distribution

<table>
<thead>
<tr>
<th>Axial level # [-]</th>
<th>B02</th>
<th>B01</th>
<th>B03</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radial ring # [-]

- B02: 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00
- B01: 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00
- B03: 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00
SFP model – overall nodalization
SFP model – CVs + core cells

| 9184 mm | 20 |
| 8844 mm | 19 |
| 8627 mm | 18 |
| 8522 mm | 17 |
| 8335 mm | 16 |
| 8080 mm | 15 |
| 7825 mm | 14 |
| 7570 mm | 13 |
| 7315 mm | 12 |
| 7060 mm | 11 |
| 6805 mm | 10 |
| 6550 mm | 9 |
| 6295 mm | 8 |
| 6040 mm | 7 |
| 5785 mm | 6 |
| 5523 mm | 5 |
| 5220 mm | 4 |
| 5002 mm | 3 |
| 4947 mm | 2 |
| 4642 mm | 1 |

| 4047 mm | 20.7 m |
| 2022 mm | |
| 1424 mm | |

B02

B01

B03
SFP model – core cells + FU
SFP model – core cells + FU + CL
SFP model – core cells + FU + CL + SS
SFP model – core cells + NS
SFP model – core cells + CN
Detailed CTMT model (138 CVs)

- +6.6 m
- +13.2 m
- +16.8 m
- +19.4 m

- +25.7 m
- +33.6 m
- +36.9 m

reactor hall section
RPV accident progress: 0.05 h (1/11)

- Situation right after reactor shutdown – intact core, full water inventory
RPV accident progress: 1.67 h (2/11)

- Water level decrease due to boil-off, still before PC depressurization
Onset of core components degradation, right after PC depressurization (water inlet)
RPV accident progress: 2.85 h (4/11)

- Water inventory make-up thanks to HAs, high void fraction visible (intensive boiling)
RPV accident progress: 3.81 h (5/11)

- Water inventory already boiled off, massive debris formation
RPV accident progress: 4.50 h (6/11)

- Core debris relocation, molten pools formation
RPV accident progress: 4.63 h (7/11)

- Debris relocation into LP – right after core support plate collapse
RPV accident progress: 5.03 h (8/11)

- Debris and metallic molten pools within LP, no remaining water
RPV accident progress: 7.35 h (9/11)

- Debris, metallic and also oxidic molten pools within LP
RPV accident progress: 8.38 h (10/11)

- Material relocation from LP – right after RPV LH failure
RPV accident progress: 228 h (11/11)

- End of calculation – last remnants of debris gone from LP
SFP accident progress: 0.0 d (1/4)

- Initial SFP state shortly after the IE
SFP accident progress: 7.4 d (2/4)

- Ongoing FAs uncovery in the B01 pool
SFP accident progress: 9.1 d (3/4)

- Further decrease of water level in the B01 pool
• End of calculation – H_2 production start in B01, FAs in B03 start to uncover
CTMT response: pressure

~ units of days

~ hundreds of kPa

no spray

fire spray

CSS
CTMT response: temperature (in RH)

- No spray
- Fire spray
- CSS

~ lower hundreds of °C

~ units of days
CTMT response: H_2 concentration (in RH)
CTMT response: Shapiro diagram (in RH)

σ criterion (FA) – fulfilled just after RPV melt-through in the tunnel connecting GA301 to GA302

λ criterion (DDT) – not fulfilled

- no spray
- fire spray
- CSS
Conclusions (RPV + SFP)

- **Simulation of simultaneous SAs in RPV & SFP is feasible**
 - using the MELCOR *EDF* module *and*
 - properly defining sources into the CTMT of
 - mass
 - enthalpy
 - FP

- **Attention must be paid to DCH module definition**
 - in order to obtain correct FP *masses* or *decay heat*

- **Careful scenario definition – timing**
 - EOC – more conservative from the point of view of FPs in the core
 - BOC – better concurrence of SAs expected
Conclusions (other matters)

- **MCAP-2015 opened issues**
 - CORijjDX record
 - PD axial relocation through *intact CN/levels with DX=1.0*; VFALL influence
 - LH/penetration failure
 - Logical CF defined as ICFLHF does *not* trigger failure
 - Differed restart
 - Calculation is not the same when restarting from MELRST
 - PD/MP2 mass oscillation
 - Unrealistic & unphysical switching between *particulate debris/metallic molten pool*

- **HSs sequencing during 1.8.6 => 2.1 conversion (film tracking)**
 - M 1.8.6 – “donor” and “acceptor” defined explicitly for HSs
 - M 2.1 – “donor” and “acceptor” stem from HSs ordering
 - **But!** SNAP re-orders the HSs according to their numbers, which may be in contradiction with the film flow direction
Thank You for Your Attention