## Proof-of-concept Gas Reactor MELCOR Model

Paul Boneham

**Jacobsen Analytics** 





#### Introduction

- Motivation: to show that a MELCOR model was possible and potentially useful for AGR
- Entirely an in-house effort by Jacobsen Analytics
  - No endorsement of modelling or results from EDF Energy or ONR etc
  - Model created using information available in publically accessible documents
- Nature of project leads to some limitations:
  - Limited possibility to benchmark model
  - Limited resource used simple model
- References for data:
  - 1. "Description of the advanced gas cooled reactor (AGR)", Riso National Laboratory, Denmark, Nov 1996.
  - 2. "VEC A transient whole circuit model for AGRs", paper presented at IAEA, Vienna, Dec 1985.
  - 3. "Decay heat generation in fission reactors", Chapter 8 of student material by M. Ragheb, Rensselaer Polytechnic, 2011.



#### Figure of AGR (from Ref. 1)



Figure 5.4. Gas baffle with gas flow paths.



#### Nodalisation – Control Volumes





### Nodalisation – summary of heatsinks

- Heatsinks modelled:
  - Boiler wall (tubes)
  - Channel modelling very simplified 8 heatsinks represent graphite sleeves in channels stacked vertically (multiplicity: 308 for each one)
  - Single graphite "lump" to represent graphite bricks in core (heat conduction to sleeves modelled)
  - Core support structures
  - Concrete walls, ceiling and floor
  - Core: no use of core package, no attempt to simulate core degradation
    - Fuel and clad represented using heatsinks (HS with multiplicity)
    - Control function for power input to UO2 pellets
    - 8 vertical sections, ~11000 fuel pins (UO2 + Steel cladding)
- Uncertainties
  - Estimated graphite heatsink dimensions based on overall core and fuel channel dimensions (fuel channel dimensions and numbers known precisely from Refs)
  - Core support (diagrid) dimensions/mass not known estimated based on overall physical dimensions of lower CPV region
  - These items likely important for overall accident response



#### Boiler model

- Boiler modelled as three sections:
  - Subcooled water
  - Steam/water zone
  - Superheated steam
- Used typical PWR SG tube dimensions due to lack of better information
- Important area of modelling uncertainty: lack of information on boiler design number of tubes, orientation (coiled), heat transfer area, etc
- Tuned heat transfer area to get reasonable agreement with operating parameters
- Steady state results suggest that boiler model would need improvement
  - More vertical nodes probably needed e.g., VEC model (Ref 2) uses 10 stacked nodes



#### Steady state

 Tuning of boiler heat transfer allowed reasonable agreement with published parameters in normal operation

| Parameter                                             | Value from Ref 1 | Value - MELCOR Model (% error)  |
|-------------------------------------------------------|------------------|---------------------------------|
| Gas flow through core                                 | 3680 kg/s        | 3732 kg/s (+1.4%)               |
| Gas inlet temperature                                 | 565 K            | 592 K (+4.8%)                   |
| Gas outlet temperature                                | 918 К            | 969 K (+5.5%)                   |
| Boiler temperature range<br>(subcooled – superheated) | 431 K to 813 K   | 486K to 636K (+12.8% to -21.8%) |



#### Steady state

• Predicted temperatures in steady state (no comparison data available)

| Parameter                              | Value - MELCOR Model                                                |
|----------------------------------------|---------------------------------------------------------------------|
| Fuel centreline temperature (mid core) | 2022K                                                               |
| Clad temperature (mid core)            | 936K                                                                |
| Graphite temperatures (range)*         | 649 K to 932 K                                                      |
|                                        | * Ref 1 suggests graphite temperatures in operation are above 670 K |



#### Transients

- TR1 reactor, turbine, gas circulator trip. Loss of feedwater
- TR2 3" break in boiler steamline with loss of feedwater. Reactor, turbine and gas circulator trip.
- TR3 primary circuit breach (1.5" diameter). Reactor, turbine, feedwater and gas circulator trip.



#### Example results will be presented at meeting

Note sensitivity to accuracy of heat sink masses and heat transfer between structures expected – i.e., heatup timescales may be significantly different to those shown here.

#### Jacobsen analytics ENGINEERING RISK SOLUTIONS

#### Conclusions (1)

- MELCOR model considered a success, given resource and information limitations
- MELCOR can produce credible accident response and initial steady state –especially bearing in mind simplicity of modelling
- Built-in materials properties for needed fluids and structures CO2, water, graphite, UO2, steel (clad)
- Good models for two phase water behaviour advantage over traditional gas reactor transient analysis codes

# Conclusions (2) - areas of modelling to Jacobsen improve for real application

#### Areas related to information needs:

- Graphite and steel heatsink dimensions
- Boiler model
  - arrangement, heat transfer area
- Roughness of fuel pins (ribbed steel cans)
- Areas related to simplified modelling:
  - Arrangement of core, representation of channels
  - Structure to structure heat transfer modelling (e.g., between graphite heatsink):
    - Conduction modelling, review radiation HT modelling
  - Severe accident simulation:
    - Use of core model
    - Model reduction of CO2 to CO
- Benchmarking
  - Benchmark against traditional AGR code analyses