

BEL

info@belv.be M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

## CURRENT APPLICATION OF MELCOR 2.1 CODE AT BEL V

8th Meeting of the "European MELCOR User Group" Imperial College, London April 6-7, 2016

BEI

Martina Adorni, Dries Gryffroy

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

#### **TABLE OF CONTENTS**

REI

- Introduction
- Progress in MELCOR modeling
- MELCOR 1.8.6-2.1 modeling
  - Conversion MELCOR 1.8.6-2.1
  - SH modeling strategy
  - Results analysis
  - DCH modeling and conversion
  - Feedback
- Conclusive remarks

### INTRODUCTION

- MELCOR: reference code selected by Bel V for severe accident analysis
- Acquisition of the MELCOR code: end 2012
- MELCOR code mainly used in the framework of Bel V R&D program
- Objectives of the presentation
  - Exchange experience and information about model development efforts (plant safety studies)
    - Key messages from model development
    - Focus on modeling activities, some sample results

Accident progression analysis

## PROGRESS IN MELCOR MODELING

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

BEL

www.belv.be

### **PWR 3-LOOPS PLANT MODEL**

 Creation of plant model: interactive procedure including selection of a nodalization scheme, preparation of the code input deck, and <u>documentation</u> of these activities

*Objective:* unique interpretation, and the full traceability and reproducibility of the code input deck; *includes Excel spreadsheets* 

REI

- PWR 3-loops plant model ~ 1000 MWe
  Main accumptions for the development of the plant
- Main assumptions for the development of the plant input deck:
  - Existing MELCOR input deck 'adapted' to the selected plant:
    - same subdivision of the input deck in separated files
    - similar `noding' of the components
    - similar structure of the CFs
  - The behavior of several systems currently modeled, then flags added in CF for activation (or not)
- Main modeling effort
  - COR package: plant data converted into the plant input deck
  - Steady state analysis: stabilization at full-power

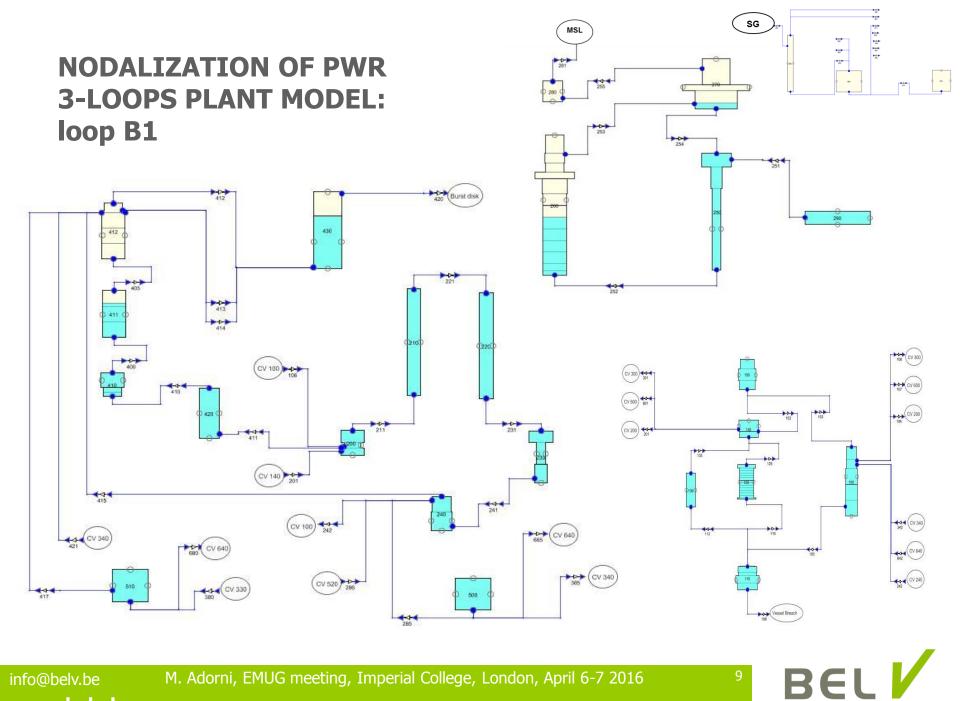
### **PWR 3-LOOPS PLANT MODEL**

- Initial development with MELCOR 1.8.6
- MELCOR 1.8.6 input deck converted to MELCOR 2.1 by means of SNAP
  - correction of conversion errors and refinements (i.e. SH)
- Ongoing

www.belv.be

- DCH/RN improved with results of ORIGEN: conversion 1.8.6-2.1
- Containment: developed for MELCOR 2.1
- Availability of input model(s) from different codes:
  - other codes: e.g. TH-system codes like CATHARE or RELAP, facilitates the MELCOR plant model development of CVH/FL/HS
  - MELCOR code (possibly the same version used, e.g. 1.8.6 and/or 2.1): facilitates the development of a new plant model!

Plant and Cycle specific ORIGEN results kindly provided by the Utility


info@belv.be M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

### **PWR 3-LOOPS PLANT MODEL**

- Included in the current MELCOR 1.8.6 (and 2.1) plant model:
  - Primary hydraulic circuits and MCPs (*each loop individually*)
  - Reactor pressure vessel hydraulic circuit
  - Core and LH
  - PRZ, SVs, PORVs, relief tank and burst disk
  - PRZ pressure regulation system, with heaters and sprays
  - CVCS, including function of PRZ level regulation
  - SGs
  - FW/AFW
  - MS line, MSIVs, SVs, RVs, collector, turbine and steam dump

REI

- Accumulators
- HPSI/LPSI (*injection and recirculation*)
- Containment **ONGOING**



M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

Exchange experience and information about model development efforts

## MELCOR 1.8.6-2.1 MODELING

Partially presented at CSARP 2015

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

#### **CONVERSION MELCOR 1.8.6-2.1**

- Conversion from MELCOR 1.8.6 input to 2.1 has been done by means of SNAP (thanks to the MELCOR Users' Workshop 2014)
  - MELGEN/MELCOR 1.8.6 input deck imported in SNAP
  - Code flavors changed to 2.1 (in '*model options*' AND in '*cases/MELCOR/edit case/model options*')
  - Besides some minor modifications, both MELGEN and MELCOR run without problem
    - 'WARNING FROM CF Package: Control Function **AAA** uses CF-VALU('**BBB**') as an argument The OLD value of CF-VALU('**BBB**') will be used because its definition appeared AFTER that of **AAA** in input' → reorganization of CFs: needed?

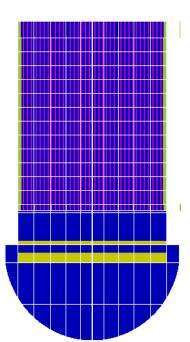
REI

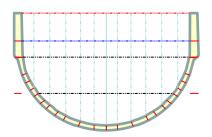
11

• SH added to COR package  $\rightarrow$  see next slides

www.belv.be

#### SH MODELING STRATEGY


- Core SHroud component added in COR package (IA 6÷19 IR 5)
  - **COR\_KSH**: PWR Core Shroud Component Masses
  - COR\_SSA: PWR Shroud and Former Surface Area Record
  - **COR\_SDR**: PWR Shroud and Former Equivalent Diameter Record
  - **COR\_PCT**: Initial PWR Component Temperatures
  - **COR\_SHS**: PWR Core Baffle (Shroud) Support Options (FIXED)
- Formers have not been added in the current revision
- Bypass (*region outside the core shroud*) included in COR\_RBV ICVHB input in (IA 6÷19 IR 5)
  - Diagnostics COR package:' WARNING: ALTITUDES IN CVH VOLUME ALTITUDE TABLES DO NOT MATCH COR CELL ELEVATIONS'
  - this required re-adjusting the volume/altitude table for the bypass volume so as to match the elevations in the COR package


12

www.belv.be

### SH MODELING STRATEGY

- Core SHroud HSs removed
- Core barrel HSs redefined as the radial boundary for the COR package using COR\_ZP IHSA records
  - HSs subdivided so as to have a separate segment for each elevation in the core
  - Barrel HSs ABOVE **HLST** (elevation of bottom plate)
  - HS\_LBF DTDZ records added to specify a dT/dz boundary fluid temperature option for the inner surfaces
  - HS\_DG record not added





13

HS representation in SNAP might be very helpful to verify nodalization

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

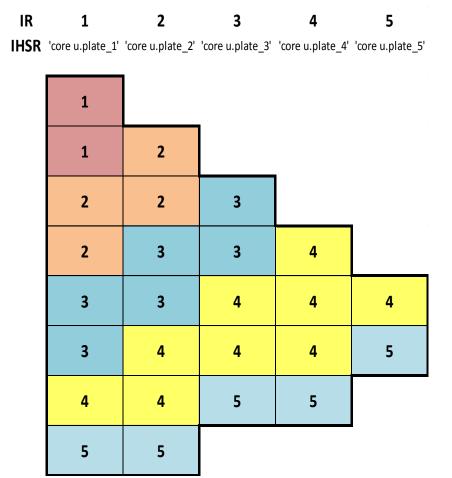
www.belv.be

#### **SUMMARY COR MODELING**

|   | IA                                                                                          | IR  |                              | IR | COR_KSH<br>XMSHSS | IHSA      | CV          | (HS) Upper |
|---|---------------------------------------------------------------------------------------------|-----|------------------------------|----|-------------------|-----------|-------------|------------|
|   | 19                                                                                          | 1÷5 | Top nozzle + upper internals | 5  | SH                | Barrel_15 |             | Core Plate |
|   | 18                                                                                          | 1÷5 | heated fuel 12               | 5  | SH                | Barrel_14 |             |            |
|   | 17                                                                                          | 1÷5 | heated fuel 11               | 5  | SH                | Barrel_13 |             | (SH) Core  |
|   | 16                                                                                          | 1÷5 | heated fuel 10               | 5  | SH                | Barrel_12 |             | Shroud     |
|   | 15                                                                                          | 1÷5 | heated fuel 9                | 5  | SH                | Barrel_11 | 0           |            |
|   | 14                                                                                          | 1÷5 | heated fuel 8                | 5  | SH                | Barrel_10 | CV120/CV130 | (HS) Core  |
|   | 13                                                                                          | 1÷5 | heated fuel 7                | 5  | SH                | Barrel_9  |             | L Barrel   |
|   | 12                                                                                          | 1÷5 | heated fuel 6                | 5  | SH                | Barrel_8  | 120         | Darret     |
|   | 11                                                                                          | 1÷5 | heated fuel 5                | 5  | SH                | Barrel_7  | CV          |            |
|   | 10                                                                                          | 1÷5 | heated fuel 4                | 5  | SH                | Barrel_6  |             | (HS)       |
|   | 9                                                                                           | 1÷5 | heated fuel 3                | 5  | SH                | Barrel_5  |             | Vessel     |
|   | 8                                                                                           | 1÷5 | heated fuel 2                | 5  | SH                | Barrel_4  |             |            |
|   | 7                                                                                           | 1÷5 | heated fuel 1                | 5  | SH                | Barrel_3  |             |            |
|   | 6                                                                                           | 1÷5 | Lower nozzle + debris gris   | 5  | SH                | Barrel_2  |             | HCSP       |
|   | 5                                                                                           | 1÷5 | Lower core plate             | 5  | -                 | Barrel_1  |             |            |
|   | 4                                                                                           | 1÷5 | Core support internals       | 5  | -                 | Barrel_0  |             | HLST       |
|   | 3                                                                                           | 1÷5 | Core support plate           | 5  | -                 | NO        |             |            |
|   | 2                                                                                           | 1÷5 | Lower plenum internals       | 5  | -                 | NO        | CV110       |            |
|   |                                                                                             |     |                              |    | -                 |           |             |            |
|   | 1                                                                                           | 1÷5 | Lower plenum internals       | 5  |                   | NO        |             |            |
|   | * Inspired by Fig. 3 of SAND2010-8249                                                       |     |                              |    |                   |           |             |            |
|   | nfo@belv.be M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016 <sup>14</sup> |     |                              |    |                   |           |             |            |
|   |                                                                                             |     |                              |    |                   |           |             |            |
| W | ww.belv.be                                                                                  |     |                              |    |                   |           |             |            |

#### SUMMARY COR MODELING

|                 |          |               | IA | IR  | COR_KFU COR_KCL |          |              | COR KSS                   | COR_KNS      |           |
|-----------------|----------|---------------|----|-----|-----------------|----------|--------------|---------------------------|--------------|-----------|
|                 |          |               |    |     | XMFUUO          |          | XMCLIN       | XMSSSS                    | XMNSSS       | XMNSZR    |
|                 |          |               | 19 | 1÷5 | -               | Cladding | Grid spacers | Top nozzle                | CR cladding  | CRGT / IT |
| 1               | <b>`</b> | Mann III Anna | 18 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          |               | 17 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          |               | 16 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          |               | 15 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          |               | 14 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 | 1        |               | 13 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          | -             | 12 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          |               | 11 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
| FUEL ROD LENGTH |          |               | 10 | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 | LENGTH   |               | 9  | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 |          |               | 8  | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 | 9        |               | 7  | 1÷5 | UO <sub>2</sub> | Cladding | Grid spacers | -                         | CR cladding  | CRGT / IT |
|                 | 뜅        |               | 6  | 1÷5 | -               | Cladding | -            | Lower nozzle, debris grid | CR cladding  | CRGT / IT |
| L               | CTIVE    |               | 5  | 1÷5 | -               | -        | -            | Lower core plate          | -            | -         |
| FUE             | Ā        |               | 4  | 1÷5 | -               | -        | -            | Core support internals    | -            | -         |
|                 |          |               | 3  | 1÷5 | -               | -        | -            | Core support plate        | -            | -         |
|                 |          |               | 2  | 1÷5 | -               | -        | -            | -                         | LP internals | -         |
| ¥               | <u>↓</u> |               | 1  | 1÷5 | -               | -        | -            | -                         | LP internals | -         |


\* Inspired by Fig. 3 of SAND2010-8249

BEL

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

#### SUMMARY COR MODELING



- 5 radial rings (IR1÷5)
- 1 additional ring for downcomer (IR6)

\* Similar to Fig. 4-3 of NUREG/CR-7110 vol.2

info@belv.be

www.belv.be

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

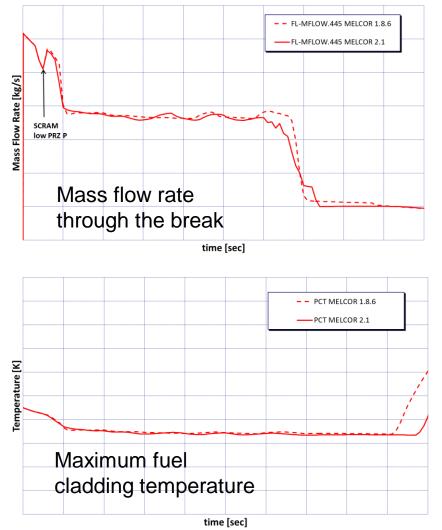
ΒΕΙ

#### STEADY STATE RESULTS

- The difference % respect to the plant nominal operating value is calculated as the ratio: |reference value – calculated value| / |reference value|
- Check of the steadiness of the steady state (qualitatively, from figures)
- Other quantities are checked and compared with plant data and the results of other calculations (notably CATHARE and RELAP) e.g. pressure drops

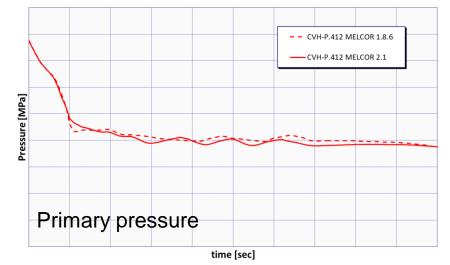
#### Comparison also with results of CATHARE and RELAP

| Parameter              | Difference % |  |  |  |  |
|------------------------|--------------|--|--|--|--|
| Primary System         |              |  |  |  |  |
| Core power             | Imposed      |  |  |  |  |
| Primary pressure (PRZ) | <1           |  |  |  |  |
| PRZ level              | <1           |  |  |  |  |
| Temperature Cold-Leg   | <1           |  |  |  |  |
| Temperature Hot-Leg    | <1           |  |  |  |  |
| Temperature average    | <1           |  |  |  |  |
| ∆T HL-CL               | <5           |  |  |  |  |
| Mass flow rate (loops) | <1           |  |  |  |  |
| Bypass core            | <1           |  |  |  |  |
| Secondary System       |              |  |  |  |  |
| Temperature FW         | Imposed      |  |  |  |  |
| SG level               | <5           |  |  |  |  |
| SG pressure            | <5           |  |  |  |  |
| SG power               | <1           |  |  |  |  |
| SG total mass          | <5           |  |  |  |  |
| Recirculation ratio    | >15          |  |  |  |  |


17

No noticeable differences MELCOR 1.8.6-MELCOR 2.1

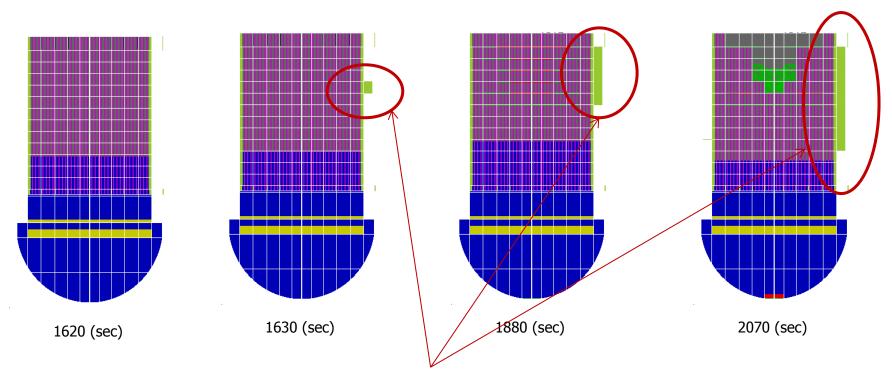
M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016


info@belv.be www.belv.be

#### **TRANSIENT RESULTS: IB-LOCA**



info@belv.be


www.belv.be



- IB-LOCA HL loop with PRZ
- Break equivalent diameter: 7.5 cm
- Break opening time: t=0s
- 3 accumulators, 1 for each CL
- HPSI and LPSI fail
- FW and MCP stop at SCRAM
- AFW not available

Βει

#### **TRANSIENT RESULTS: IB-LOCA**



• What appeared with the modeling of the SH in COR package

SH

BEL

- MELCOR 2.1 results, PTFread version 1.8.6
- IR6: additional ring for downcomer

#### **DCH MODELING AND CONVERSION**

- Plant and Cycle specific ORIGEN results kindly provided by the Utility
  - (by means of) MELCOR 1.8.6 input deck
    - Initial mass and decay heat (per unit mass) as function of time
    - Axial and radial power profiles
- Conversion 1.8.6-2.1 by means of SNAP
  - Only DCH input replaced after conversion (conversion errors already corrected for the other parts of the input deck)
  - No error messages in the output after conversion for the selected part

REI

#### **DCH MODELING AND CONVERSION**

#### MELCOR 2.1

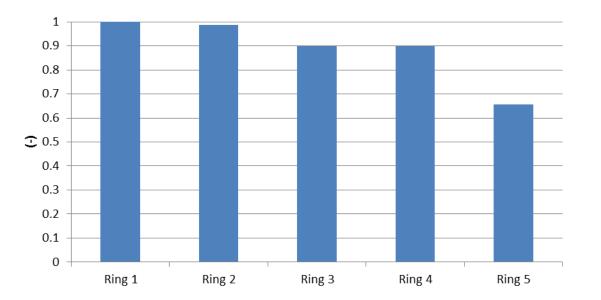
- DCH
  - ..
  - DCH\_EL Element Name and Time, Decay Heat Data
  - Table *decay heat:* not needed
- COR
  - Table *prompt power:* needed
  - Radial (COR\_RP frpow) and axial (COR\_ZP fzpow) power profiles are optional
  - Where to input radial and axial power profiles, to reproduce reactor data?



### **RN MODELING**

- RN input
  - Axial and radial fractions to match the expected axial and radial power profiles

**BFI** 


22

- **RN1\_FPN** Initial Core Fuel and Cavity Radionuclide Inventories
  - **RINP1**: axial node multiplier
  - **RINP2**: radial node multiplier
- How to verify that the quantities introduced in the input file are correctly implemented?

#### VERIFICATION

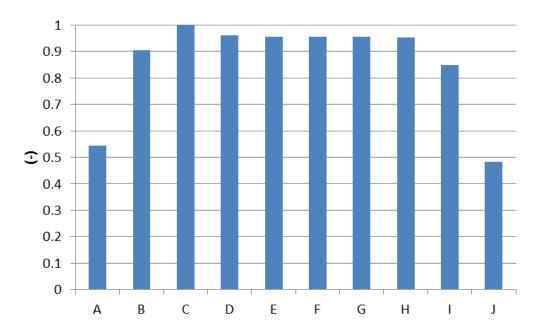
• Radial power / FA

– From output file & Microsoft Excel



BEL

23


M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

#### VERIFICATION

• Axial power / ring

– From output file & Microsoft Excel



ΒΕΙ

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

www.belv.be

#### Conversion MELCOR 1.8.6-2.1

**BEI** 

#### FEEDBACK

#### • Main issues after conversion

- ALL THE COMMENTS disappear
- Subdivision of the input deck in separated files is kept BUT input records REORGANIZED
- NAME-approach e.g. CF/FL..., in place of numbers
- MELCOR 1.8.6 input deck used for
  - COMMENTS (still to be transferred)
  - NAME-approach (not much attention for development of input deck 1.8.6, more familiar with the numbers)
- SNAP is really useful and user friendly tool for the conversion
- Verification of input deck after conversion is needed!

www.belv.be

#### Steady state and transient analysis

#### FEEDBACK

- No noticeable differences MELCOR 1.8.6-2.1 steady state results
- Differences in transient results might be due to the differences in the input decks (*the input decks are not identical*)
  - improvements/corrections only in MELCOR 2.1 input deck version
  - limited number of comparisons
- `*Diagnostics and Error Messages*' sections in UG very helpful
- Further training/guides on SNAP post processing might be useful
- Further model development (and analysis) will only continue with MELCOR 2.1
  - too complex to keep two input decks updated
  - not too complex to make modifications, as 1.8.6 version was developed on Microsoft Excel spreadsheets



#### Current application of MELCOR 2.1 code at Bel V

## **CONCLUSIVE REMARKS**

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

BEL

www.belv.be

#### **CONCLUSIVE REMARKS**

- MELCOR: reference code selected by Bel V for severe accident analysis
- MELCOR code mainly used in the framework of Bel V R&D program
- A MELCOR model for 3-loops PWR has been developed for MELCOR 1.8.6 and converted in MELCOR 2.1
  - The model is suitable for steady-state and transients calculations
    - Comparisons against plant nominal conditions and code-to-code are performed for steady-state results (when available, mainly with results of CATHARE)
    - Transient analyses are ongoing on selected transients (including comparisons against CATHARE results, when available)
  - Verification of input deck after conversion is needed!
- Further model development will only continue with MELCOR 2.1 code version

# THANKS FOR YOUR ATTENTION!

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016

BEL

info@belv.be www.belv.be

# **QUESTIONS?**

M. Adorni, EMUG meeting, Imperial College, London, April 6-7 2016



www.belv.be