MELCOR Application to the Analysis of SMR

NRG

Fabio Alcaro

EU DuC=N

6-7/04/2016

Outline

- Introduction
 - NRG Experience with MELCOR
- SMR Steam Generator
 - TH model
 - CHF condition calculation
- SMR Check Valves
 - Control Function definition
- Collapsed Water Level
 - Sensitivity on bubble rise velocity
- Conclusions

Introduction

Uses of MELCOR @ NRG:

Post-Fukushima SFP analyses

Spent Fuel Pool analyses in MELCOR (and other codes) in order to assess the coolability after a SFP LOCA scenario

□ Severe accident analysis for KERENA

- (Part of) PSA Level 2 analysis
- Safety analyses for shutdown and power scenarios

□ HFR calculations for license renewal

- Severe accident analyses
- PSA Level 2 analysis

□ Severe accident analyses for the KCB power plant

Safety analysis calculations

KCB power plant desktop simulator

- Development of an interactive simulator of the Borssele NPP
- Dutch regulator personnel training

GKN Dodewaard Power Plant

- PSA Level 2 analysis
- Direct containment heating analysis (comparison of MELCOR vs CONTAIN)

Introduction

Desktop simulator

- □ TH codes: MELCOR, RELAP, MAAP and SPECTRA (NRG code)
- Visor: NRG visualization software compatible with the most widespread TH and SA codes

Westinghouse SMR

- Westinghouse SMR is an integral PWR nuclear system
- The Pressure Vessel and most of the passive safety system components are contained inside a Containment Vessel
 - The Containment Vessel is immersed in a pool of cold water (OCP)
 - The atmosphere inside the Containment Vessel is highly depressurized under NC

□ The Passive Safety System (PXS) is made of:

- The In-Containment Pool (ICP);
- Four Core Makeup Tanks (CMT), each containing a PRHR heat exchanger;
- Two Sump Injection Tanks (SIT), connected to the ICP
- A two-stage automatic depressurization system (ADS)
- An Upper Internal Storage Tank (UIST)
- > An Out-Containment Pool (OCP) housing the CV

The MELCOR model of the SMR Steam Generator

- ➢ HX power: 800 MW
- Once-through tube-shell HX
- The TH nodalization consists of 10 uniform axial nodes for the CVs (both tubes and shell)
- The tubes wall is modelled with 10 heat structures with the same node geometry of the boundary CVs

The steam production is a twostage process:

- The primary coolant heat is removed in a tube-shell HX (straight tubes) inside the RPV
- The steam is separated from the secondary two-phase mixture in a dedicated component

Post-CHF regime in the upper part of SG!

$$q_{atms} = \frac{Q_{atms}}{A_{atms}}, \quad q_{pool} = \frac{Q_{pool}}{A_{pool}}$$

- □ Heat flux definition:
- □ MELCOR result, node 165:
 - q = 3.8 MW/m² (close to CHF)
 - Q = 120 MW
 - $Q/A = 0.37 \text{ MW/m}^2$
- □ *q* definition appropriate for stratified flow
- ❑ Bubbly flow (~90% void) → overestimation of heat flux by about a factor of 10

WSMR, MELCOR, SG, Tubes Time: 0.0 s Node 1	68						
Q = -792.2 MW (POOL) = 0.0							
Primary side (inside tubes)Tube wallSecondary side (outside) $q(ATMS) = 2.4$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
JN-112 from CV-112 JN-169 ▲ to CV-155 Q(ATMS) = 7 Q(POOL)/A = 0.0							
4406 kg/s 606 K 752 kg/s 521 K O(A TMS)/A = 2.3							
4.79 m/s ♥ 15.54 MPa 5.42 m/s 6.00 MPa ((1111))							
V-gas, m/s T-gas, K h T, K h T-gas, K V-gas, m/s V-liq, m/s T-liq, K X [-] kW/m ² K (1) (2) (3) (4) kW/m ² K X [-] T-fiq, K V-liq, m/s							
CV-113 0.00 601 0.00 32.37 584 571 558 177.48 0.55 564 6.53 CV-169							
JN-113 0.00 601 JN-168 JN-168							
CV-114 4.67 601 0.00 32.06 600 600 599 0.00 0.43 549 4.33 $CV-168$							
JN-114 0.00 601 JN-167							
CV-115 4.66 601 0.00 32.03 600 599 598 0.00 0.42 549 4.36 $CV-167$							
JN-115 0.00 600							
CV-116 4.66 600 0.00 31.99 599 598 598 598 598 598 598 598 598 5							
0.00 596 0.00 517 (561 bat ds 0.4) 552 4.76 CV 165							
IN 117 4.01 390 IN 164							
IN 118 343 352 IN 163							
000 588 0.00 21.00 577 557 571 20 551 2.62 00 162							
IN 110 4.40 300 IN 162							
0.00 584 0.00 30.85 573 564 556 117.37 0.11 550 1.78 0.112 CV-120 4.40 584 0.00 30.85 573 564 556 117.37 0.11 550 1.78 CV-162							
JN-120 0.00 581 0.00 0.05 550 550 550 550 550 550 550 1.16							
CV-121 434 581 0.00 30.65 570 562 555 72.06 0.03 546 0.71 CV-161							
JN-121 0.00 577 543 0.00 JN-160							
CV-122 4.30 577 0.00 30.48 568 561 554 23.32 0.00 543 0.45 CV-160							
JN-122 III 100 I'' $I'' I'' I'' I'' I''' I''' I''' I$							
$\frac{JN-122}{4406 \text{ kg/s}} \frac{\text{to } \text{CV-123}}{577 \text{ K}} \frac{J(1) - \frac{1}{2}}{2} \frac{JN-151}{752 \text{ kg/s}} \frac{\text{from } \text{CV-150}}{521 \text{ K}} \frac{JN-121}{100 \text{ K}} \frac{JN-121}{520 \text{ K}} \frac{JN-121}{100 \text{ K}}$	5						
$4.28 \text{ m/s} \downarrow 15.48 \text{ MPa} \qquad 0.44 \text{ m/s} \downarrow 6.20 \text{ MPa} \qquad q(POOL) = 3.3$							

N00E 105 q(POOL) = 3.8E+006 W/m² q(ATMS) = 7.2E+003 W/m² Q(POOL) = 1.2E+008 W Q(ATMS) = 2.0E+006 W Q(POOL)/A = 3.9E+005 W/m² Q(ATMS)/A = 6.4E+003 W/m²

- Problem can be partly remedied by changing the void fraction limit (sensitivity coefficient SC 4407, item 11):
 - \succ default: $\alpha_{MAX} = 0.40$
 - > changed to: $\alpha_{MAX} = 0.95$
- □ New results: no CHF.
- However, heat flux is still overestimated, by about factor of 2. Node 168:
 - q = 0.73 MW/m² (close to CHF)
 - ➢ Q/A = 0.36 MW/m²

		WSM	IR. ME	LCOR	. SG.	Tub	es			Time:	0.0 s	1	Node 168	
	WSMR, MELCOR, SG, Tubes Q = -793.5 MW										1 1	NOUE 107 POOL) = 7.3E		
	Primary side (inside tubes)				Tube wall				Secondary side (outside)] qî(4	ATMS) = 4.0E	+003 W/m ²
l	CV-113/122			SC-160/169				CV-160/169				POOL) = 1.1E ATMS) = 6.6E		
		4503 kg/s	rom CV-1 597 K	12					7521		<u> </u>	QrPC	OOL)/A = 3.6E MS)/A = 2.1E	+005 W/m ²
	W	4.68 m/s ♥ : /s T-gas, K	15 <i>.</i> 53 MPa	h		Т, К		h	t 86.6		APa V-gas, m/s		,	
		s T-liq, K	X [-] _k v	n ₩/m²K	(1) (2		3) (4)	kW/m ² K	X [-]	T-gas K T-liq, K	v-gas, m/s V-liq, m/s			
CV-113	0.00	592 592	0.00	31.96	578	566		-98.01	0.30	551	6.48	CV-169		
JN-113	4.64	592		0100	270	200	~	Ĩ		549 551	6.15 5.28	JN-168		
CV-114	4.56	588	0.00	31.64	575	565	(556	107.44	0.26	549	5.08	CV-168		
JN-114 CV-115	0.00 4.50	584 584	0.00	31.39	573	564	555	99.00	0.21	551 549	4.28 4.09	JN-167 CV-167		
JN-115 CV-116	0.00	581	0.00	31.19	571	563	555	-89.89	0.16	551	3.40	JN-166 CV-166		
JN-116	4.44	581	0.00	51.12	271	200	7	~~~	0.10	549 551	3.21 2.62	JN-165		
CV-117 JN-117	0.00 4.40	578 578	0.00	31.02	569	562	(555	80.22	0.12	551 549	2.62	CV-165 JN-164		
CV-118	0.00 4.36	575 575	0.00	30.87	567	560	554	70.05	0.08	550 549	1.94 1.75	CV-164		
JN-118 CV-119	0.00	572	0.00	30.75	565	559	554	59.55	0.05	550	1.35	JN-163 CV-163		
JN-119	4.32	572	0.00	30.75	202	222	554	59.55		549	1.14	JN-162		
CV-120	0.00 4.29	570 570	0.00	30.65	563	558	554	48.93	0.02	550 549	0.99 0.65	CV-162 JN-161		
JN-120 CV-121	0.00 4.27	568 568	0.00	30.57	562	557	553	24.16	0.00	546 548	0.00 0.46	CV-161		
JN-121 CV-122 JN-122	0.00 4.24	566 566	0.00	30.51	561	557	553	7.17	0.00	533 533	0.00 0.45	JN-160 CV-160		
JIN-122 '		JN-122 to 4503 kg/s	D CV-123 566 K		T(1) 1	2 2) T(4)		JN-1: 7521	51 ▲ from C kg/s 521 F	V-150	-	Node 16 ⁴	ς.

0.44 m/s

6.20 MPa

4503 kg/s 4.23 m/s 🚽 15.48 MPa Node 165 $q(POOL) = 4.7E+005 W/m^2$ $q(ATMS) = 2.2E+003 W/m^2$ Q(POOL) = 7.9E+007 W Q(ATMS) = 3.4E+005 W $Q(POOL)/A = 2.5E+005 W/m^2$ $Q(ATMS)/A = 1.1E+003 W/m^2$

Comparison with other TH codes:

Node 165	MELCOR	MELCOR	RELAP	SPECTRA	N
	$\alpha_{MAX} = 0.40$	$\alpha_{MAX} = 0.95$			
q (code output)	3.8	0.47	0.30	0.25	MW/m ²
Q/A (hand-calc.)	0.39	0.25	0.30	0.25	MW/m ²
Node 168	MELCOR	MELCOR	RELAP	SPECTRA	N
	$\alpha_{MAX} = 0.40$	$\alpha_{\rm MAX}$ = 0.95			
q (code output)	CHF	0.73	0.34	0.35	MW/m ²
Q/A (hand-calc.)	~0	0.36	0.34	0.35	MW/m ²

Conclusion:

- In bubbly flow regime MELCOR overestimates heat flux
 - ✓ by ~10 for default α_{MAX} ,
 - ✓ by ~2 for α_{MAX} =0.95,
 - ✓ no effect of a_{MAX} above 0.95.
- > Effectively MELCOR <u>underestimates CHF</u> by the above mentioned ratios.
- > This conclusion was reached with MELCOR 1.8.6. Input converted to MELCOR 2.x \rightarrow approximately the same results obtained with MELCOR 2.1.5540.

PWR SG MELCOR Model

□ Results of 1300 MW_{th} PWR, KCB, MELCOR 2.1

- Secondary side modeled by a single volume, CV-300
- □ Summary
 - No overestimation of heat flux
- □ Conclusion
 - No effect in typical PWR SG geometry and modeling approach. Seems to be SMR-specific.
 - Is dividing secondary side of SG into a number of nodes (Control Volumes) always appropriate?

Node 214	Node 221
q(POOL) = 1.8E+005 W/m ²	$q(POOL) = 1.5E+005 W/m^2$
q(ATMS) = 0.0E+000 W/m ²	$q(ATMS) = 0.0E+000 W/m^2$
Q(POOL) = 5.8E+007 W	Q(POOL) = 4.7E+007 W
Q(ATMS) = 0.0E+000 W	Q(ATMS) = 0.0E+000 W
$Q(POOL)/A = 1.8E+005 W/m^2$	$Q(POOL)/A = 1.5E+005 W/m^2$
$\vec{Q}(ATMS)/A = 0.0E+000 W/m^2$	$\vec{Q}(ATMS)/A = 0.0E+000 W/m^2$

Node 211	Node 224
$q(POOL) = 3.0E + 005 W/m^2$	$q(POOL) = 9.8E+004 W/m^2$
$\hat{q}(ATMS) = 0.0E + 000 W/m^2$	$q(ATMS) = 0.0E+000 W/m^2$
Q(POOL) = 6.7E + 007 W	Q(POOL) = 2.2E+007 W
Q(ATMS) = 0.0E + 000 W	Q(ATMS) = 0.0E+000 W
$Q(POOL)/A = 2.9E+005 W/m^2$	$Q(POOL)/A = 9.7E+004 W/m^{2}$
$Q(ATMS)/A = 0.0E + 000 W/m^2$	$Q(ATMS)/A = 0.0E+000 W/m^2$

Sump Recirculation in SMR

The SMR makes use of gravitydriven passive safety features for postulated accidents

- Heat removal through the four PRHR loops connected to the RPV
- Water injection in the RPV from the SITs
- Recirculation of water from the sump

The sump recirculation is triggered by hydrostatic pressure in the CV

- After a LOCA, discharged coolant is condensed in the CV
- The pressure differential between the CV and the ICP opens the sump check valves
- The water is injected in the RPV downcomer through the ICP-to-RPV lines

Check Valve Model

- The CF that triggers the check valve opening was based on the difference of upstream and downstream CV pressure, at first
 - The opening never occurred during the transient
 - The opening was experienced with other TH codes
- The reason was the lack of the contribution of the hydrostatic head in the CVs
- When passive systems governed by natural circulation are concerned the hydrostatic head plays a fundamental role
- Suggestion: why not consider the junction elevation directly in the valve model (e.g.: define junction pressures)?

Old model: $\Delta p_{VLV} = p_2 - p_1$ New model: $\Delta p_{VLV} = (p_2 + \rho_{2,i}gh_2) - (p_1 + \rho_{1,i}gh_1)$

Core Flooding

Safety injections provide the flooding of the core

- The decay heat removal is obtained by water evaporation
- The amount of liquid in the core is sensitive to the value of the bubble rise velocity in CVs

□ Generally bubble rise velocity in a boiling RVP is ~ 1 m/s

- > The MELCOR default value is 0.3 m/s
- The default value results in underestimation of the void fraction in the upper plenum
- The value was decreased to 0.1 m/s resulting in a better agreement with the other codes

Core Flooding

□ Sensitivity coefficient SC 4407 item 1: default $v_{BUB} = 0.3$ m/s (left), modified $v_{BUB} = 0.1$ m/s (right)

Conclusions

Issues and comments

CHF Condition:

- SMR SG secondary side: fine CV nodalization can lead to CHF condition encountered in high void fraction volumes when high heat flux is involved
- > A fine CV/HS nodalization is not envisaged in such situations

Check Valve Model:

- Hydrostatic head plays a fundamental role in the actuation of passive safety systems that rely on natural convection or stored potential energy
- Control logic of check valves has to consider hydrostatic head for adequate modelling
- > Can the FL package internally account for junction elevation in valves?

□ Collapsed Water Level:

- The default value of the bubble rise velocity (0.3 m/s) in CVs results in a general underestimation of the CV void fraction
- A sensitivity calculation was performed with a modified value (0.1 m/s) which resulted in a better agreement in terms of RPV inventory, collapsed water level and void fraction

Thank you for your attention! Questions?

NZG