

AN AUTOMATED TOOL FOR MODELLING THE AUXILIARY BUILDING OF BELGIAN NUCLEAR POWER PLANTS IN MELCOR 1.8.6

EMUG 2015 - Brussels

TABLE OF CONTENTS

Presentation of the automated tool

- Purpose
- Methodology
- Offline demo
- Conclusions

TABLE OF CONTENTS

Presentation of the automated tool

- Purpose
- Methodology
- Offline demo
- Conclusions

TRACTEBEL Engineering

PURPOSE OF THE MATLAB SCRIPT

• Requested:

– Modelling of the auxiliary building of all the nuclear power plants in Belgium

• Large data input

- Manageable with an automated tool
- Automatic reduction of the number of CVs, FLs and HSs

METHODOLOGY

• The starting point for the automated tool

 A database (rooms, connections, walls and ventilation lines) resulting from Fire Hazard Analysis projects and walk downs (performed by Tractebel Engineering) is used

• The input for the automated tool

- Mass/energy source arrival
- 1) Creation of blocks
- 2) Grouping method to reduce number of rooms
- 3) Addition of the ventilation and design leakage to the model
- The output of the automated tool
 - Melcor User Input File

• Exact model of an auxiliary building (Tihange 1)

- 218 rooms, 602 flow paths and 1032 heat structures

• Initial situation of the demo:

- 16 rooms, 19 flow paths and 96 heat structures
- Three arrivals of mass/energy

• Step 1: grouping in blocks

- A block is started by a room with an arrival of mass/energy
- One block is a set of rooms which are all connected
- No interconnection between the blocks

- Step 2: grouping according to connection ratio
 - The user defines the final number of control volumes (5 for example)
 - Grouping based on a connection ratio:

volume of the connection biggest room volume of the connecting rooms

- 13 connections; 13 connection ratios
- Start grouping with the biggest connection ratio (13 CV to 12 CV)
- Continue grouping until the user defined CV number is reached

• Step 2: grouping according to connection ratio

- Step 2: grouping according to connection ratio
 - Note that a decision has to be made at this point:
 - Grouping in one flow path, loss of accuracy, increase in simplification
 - Not grouping in one flow path, increase in accuracy, decrease in simplification

• Step 3: Extend the model with ventilation

- Data resulting from the databases and plant specifications
- Same methodology used as before, addition of the ventilation flow paths

- Step 3: Extend the model with design leakages
 - Design leakage between AB and AS
 - Design leakage between AB and environment.

TABLE OF CONTENTS

- Off line demo
- Conclusions

CONCLUSION

- The auxiliary building of the nuclear power plants in Belgian has been modelled
- The user defined control volumes can be changed instantaneously
- The databases are checked for inconsistencies
 - Flow path height not consistent with From/To room elevation
- Whenever there is an update of the database
 - Auxiliary building model is generated instantaneously
- Consistencies in the modelling of all auxiliary buildings

CONCLUSION

- There is a need for engineering judgment
 - The number of rooms
 - The number of connections
- Every decision is supported by the automated tool