

Application of MELCOR 1.8.2 (fusion version) and MELCOR 2.1 on the DEMO Helium Cooled Pebble Bed blanket concept.

Bruno Gonfiotti

PhD student at University of Pisa Dipartimento di Ingegneria Civile ed Industriale (DICI)

Email: bruno.gonfiotti@for.unipi.it

- 1. Introduction Motivation.
- 2. Description of DEMO/HCPB and its PHTS.
- 3. PHTS modellization for Stationary runs.
- 4. PHTS modellization for In-Vessel LOCA scenarios.
- 5. Conclusions.
- 6. Acknowledgments.

- Several incidental/accidental conditions can hamper the safety of a fusion reactor, and the Loss of Coolant Accident (LOCA) of the blanket Primary Heat Transfer System (PHTS) is one of the most challenging [1].
- To date, one of the main codes employed for incidental conditions analyses in fusion installations is MELCOR 1.8.x. Although, this version is quite old, and newer version were released (MELCOR 2.1.6342).
- The aim of this work is to stress the positive and negative aspects of M 1.8.2 and M 2.1 through a "version-to-version" comparison employing the same nodalisation.

- DEMO represents the prosecution of the scientific and technological challenge of ITER, and it should demonstrate the suitability of the fusion power as a sustainable energy power source.
- To date, several different DEMO concepts exist basing on the various "blanket concept" proposed:
 - HCPB Helium Cooled Pebble Bed
 - WCLL Water Cooled Lithium Lead

DEMO & HCPB blanket concept (3/3)

- Two independent coolant loops for the Out-Board (OB) segments and two for the In-Board (IB) ones. [2]
- He as coolant at 8.0 MPa in the temperature range of 300 500
 °C. He inventory ~7000 kg each OB coolant loop. [3]

- Each OB loop removes 910.5 MW. [3]
- 6 Cooling trains (CTs) with one helicoidal steam generator each (5 operational and 1 spare). [2]

PHTS modellization: stationary run

Characteristics	MELCOR	Characteristics	MELCOR
EV Volume [m ³]	70000.0	EV Temperature [K]	313.35
Heat transfer area [m ²]	15000.0	Blanket temp. [K]	773.15
Blanket HS temp. [K]	773.15	SG temp. [K]	573.15
SG HS temp. [K]	573.15	Total pressure drop [MPa]	0.37
Total mass flow [kg/s]	875.5	Heat flow [W/m ²]	60700.0

7th Meeting of the "European MELCOR User Group" Brussels, March 17 - 18, 2015

8 of 20

Stationary run results (1/2)

Parameter	Reference	1.8.2	2.1	Difference [%]
Blanket Total Pressure [MPa]	-	8.19	8.2	0.1 %
SG Total pressure [MPa]	-	7.82	7.83	0.1 %
Pressure drops [MPa]	0.37	0.37	0.37	0.0 %
Mass Flow rate [kg/s]	875.5	872.8	872.3	< 0.04 %
He mass [kg]	~ 6620.0	6795.4	6795.4	3.0 %
Blanket CV Temp. [K]	773.15	771.39	773.39	~ 0.2 %
Blanket HS Temp. [K]	773.15	773.43	781.61	< 1.1 %
SG CV Temp. [K]	573.15	573.83	573.82	~ 0.1 %
SG HS Temp. [K]	573.15	570.3	570.52	< 0.5 %
HTC Blanket [W/m ² K]	-	29686.8	7384.7	75.0 %
HTC SG [W/m ² K]	-	17221.8	18421.1	7.0 %

The results of the stationary run are quite similar, but great differences exist on the inner heat transfer coefficients of the two HSs.

■ Differences on the HTC → Due to the different temperature equilibrium among CV and HS.

M 1.8.2 \rightarrow To remove 60700.0 W/m² with a Δ T of 2.04 K an HTC of 29754.9 W/m²K is needed.

- $q'' = HTC(T_{HS} T_{CV})$ M 2.1 \rightarrow To remove 60700.0 W/m² with a ΔT of 8.22 K an HTC of 7384.7 W/m²K is needed.
- No differences changing the default SC from 2.1 to 1.86.
- One difference exists: CPFPL and CPFAL (critical pool fractions) values.
 - In 1.8.2 set both to 0.0;
 - In 2.1 set >0.0 due to numerical error if set to 0.0
- Although, the stationary runs provide exhaustive results. Further analyses with complex nodalisations are required.

In-Vessel LOCA: Approach

Helium release inside the Vacuum Vessel (VV), and opening of a rupture disk connecting the VV and the Expansion Volume (EV) once reached the imposed set-point.

Brussels, March 17 - 18, 2015

11 of 20

In-Vessel LOCA: modellisation

Parameter	MELCOR	
EV Volume [m ³]	70000.0	
EV temp. [K]	313.35	Expansion volume (EV)
VV Pressure [Pa]	210.0	
VV Volume [m ³]	1860.0	25 – Rupture Disk VV VV 24
VV internal Temp. [K]	473.15	
W dust mass [kg]	10.0	
T mass [kg]	0.2	
R. D. area [m ²]	1.0	
R. D. set point [MPa]	0.15	

PHTS as in stationary run.

■ Rupture → Valve connecting PHTS and VV.

VV as a single volume.

Rupture disk connecting VV and EV.

- Similar PHTS depressurization, but numerical instabilities in M 2.1.
- Similar EV depressurization.
- VV depressurization rate different, especially from 114.0 s to 135.0 s.
- The helium ingress inside the VV could cause the W dust mobilisation.

13 of 20

14 of 20

16 of 20

- The fast pressurization of the VV can lead to the W dust resuspension.
- W dust data taken from STARDUST experiment [4].
- M lacks of a resuspension model.

- Version-to-version comparison among M 1.8.2 (fusion version) and M 2.1.6342 employing the same nodalisation.
- Stationary run: Different blanket HTC value, but reliable and satisfactory results for both versions.
- In-Vessel run: Minor differences, except for the atmospheric temperatures and the W dust behaviour.
- In the future the introduction of fusion specific models of the 1.8.6 version inside the 2.1 version could be an interesting evolution.

The work with MELCOR 1.8.2 has been performed at Karlsruhe Institute of Technology (KIT) at Karlsruhe (D).

The work with MELCOR 2.1 has been performed at University of Pisa (UNIPI) at Pisa (I).

Thank you for your attention

Bruno Gonfiotti

PhD student at University of Pisa

Email: bruno.gonfiotti@for.unipi.it

- D. N. Dongiovanni, T. Pinna, and D. Carloni, "RAMI Analysis for DEMO HCPB blanket concept cooling system", Proceedings of Symposium of Fusion Technology 2014 (SOFT2014), San Sebastian, Spain, September 29-October 3, 2014.
- 2. M. D. Donne, "Conceptual Design of the Cooling System for a DEMO Fusion Reactor with Helium Cooled Solid Breeder Blanket and Calculation of the Transient Temperature Behavior in Accidents," Karlsruhe, 1992.
- 3. D. Carloni and S. Kecskes, "Helium Cooled Blanket Design Development," Karlsruhe, 2012.
- 4. M. T. Porfiri, N. Forgione, S. Paci and A. Rufoloni, "Dust mobilization experiments in the context of the fusion plants STARDUST facility," in *Seventh International Symposium on Fusion Nuclear Technology ISFNT-7 Part B*, 2006.

