Current activities and experience with application of MELCOR 2.1 at UJD SR

The 7th Meeting of the European MELCOR User Group Brussels, Belgium March 17-18, 2015

Ján Husárček, Ľubica Kubišová, Stanislava Capeková

Division of safety analyses and technical support

Presented by Ľubica Kubišová

Outline

- Introduction
- Input deck adaptation/development for MELCOR 2.1
- Calculations performed
- Example of the results
- Difficulties encountered
- Foreseen activities

(•

Introduction

- New Agreement between UJD and US NRC on participation in the US NRC program on Severe Accident Research signed in January 2014 (MELCOR 2.1)
- UJD started with input deck adaptation/development for Slovak VVER- 440/V213 NPPs and MELCOR 2.1
- Participation in MELCOR workshop, MCAP and CSARP meetings (September 2014)
- Calculation of selected severe accident scenarios
 - the measures for severe accident management and staff interventions of NPP were considered
 - as a support for independent regulatory review

Primary and secondary circuits

- 3-loops model consisting of
 - a simple circulation loop with pressurizer
 - double and triple circulation loops
- 69 control volumes (14 for RPV, 11 CVs per 1 loop, 4 CVs for PRZ, 4 CVs for HAs, 13 CVs for secondary circuit)
- 94 flow paths, 199 heat structures
- a relatively simple SG model
 - primary side of SGs axially divided into 3 sections, each with
 - 3 vertical levels of HS representing heat-exchange tube bundle
 - a single volume used for secondary side

Nodalization scheme of RPV and PC

Core region

- Divided into 8 radial rings (including annulus of RPV) and 19 axial levels
- 312 fuel rods located within Ring 1, 2, 4, 5 and 7
- 37 control rods located within Ring 3 and 6
- Fuel in active core within axial levels 11 18; fuel section of control assemblies within axial levels 5 – 9
- BWR model used corresponds better to VVER-440 core with fuel rod canisters, however limitations for core shroud modeling

RPV bottom

• 10 heat nodes in 9 segments

7

Containment

- 77 control volumes + 3 CVs (reactor hall, surrounding rooms, environment)
- 129 flow paths (including 2 FL paths for permanent leakages)
- 155 heat structures
- Bubble condenser 3 levels at the bottom modelled individually, upper levels 4 – 12 grouped by 3 levels per modelling horizontal level, a single air trap volume communicates with each group of 3 vertical levels

Nodalization scheme of the containment

(9

9

(?)

Engineering safety features and operator actions

- Emergency Core Cooling systems:
 - High-Pressure and Low-Pressure Injection Systems (3 trains per system)
 - Hydro-accumulators (4 HAs)
- Active and passive spray systems in the containment (ASS, PSS)
- Passive Autocatalytic Re-combiners (modeled using ESF package)
- Specific SAM measures modeled by dedicated flow paths allowing to:
 - aggressively depressurize the primary and/or secondary circuits
 - Drain water of the Bubble Condenser trays
 - flood the cavity by water (located on the floor of SG boxes)
- Emergency Source of Coolant possible use for feeding SS, ECCS, cavity flooding, feeding of SGs, etc.

Redefinition of various data/ parameters

- Concrete composition in the reactor cavity
- Decay heat and initial radionuclide composition
- Properties of Passive Autocatalytic Re-combiners (AREVA empirical constants for FR90/1-150, FR90/1-750T, FR90/1-1500 PARs used)
- Some of material properties

Selected parameters of the model				
Parameter	Value			
Mean initial enrichment of the fuel	4,25%			
Pressure in HA	3,50 MPa			
Mass of fuel in the core	49 736 kg			
Mass of zirconium in the core	18 688 kg			
Mass of stainless steel modelled in the RPV	42 185 kg			
Free volume in the containment	52 055 m ³			
Permanent leakages in the containment	5,54%/ 24 hod			
Free volume in the reactor hall (both units)	163 700 m ³			
Passive autocatalytic recombiners in the containment	28×PAR FR1-1500T, 4×PAR FR1-750T			

Analyses performed

13 scenarios successfully calculated, variants on:

- IE (SBO; LOCAs, IFLOCA or SGTR all combined with loss of power)
- operator actions (PC depressurization through SAM PRZ valve, drainage of BC trays, cavity flooding)
- assumptions related to the containment state (intact, failed – before or at the time of V.B., by-passed)
- operation regime (full power, shutdown opened RPV)
- Assumption of

Analyses performed

List of scenarios calculated						
No.	Initiating event		Containment			
		PC depress.	Drainage of BC trays	Cavity flooding		
STC01	BLACKOUT	no	no	no	sealed	
STC02	BLACKOUT	Yes	Yes	no	sealed	
STC03	BLACKOUT	Yes	Yes	no	failed before V.B.	
STC08	MLOCA_100mm_HL	Yes	Yes	no	sealed	
STC09	MLOCA_100mm_HL	Yes	Yes	no	failed before V.B.	
STC15	LLOCA_2x496mm_HL	Yes	Yes	no	sealed	
STC16	LLOCA_2x496mm_CL	Yes	Yes	no	sealed	
STC17	LLOCA_2x496mm_HL	Yes	Yes	no	failed before V.B.	
STC18	LLOCA_2x496mm_HL	Yes	Yes	Yes	sealed	
STC24	IFLOCA_20mm_HL	Yes	Yes	no	bypass	
STC30	SGTR	Yes	no	no	failed at V.B.	
STC31	SGTR	Yes	no	no	bypass	
STC36	OR	no	no	no	_	

Timing of key events and other results for analyzed scenarios							
No.	Time of gap release, s	Time of core support plate failure, s	Time of lower head failure, s	Time of the containme nt failure, s	Mass of hydrogen produced in RPV, kg	Pressure in the containment after 2 days, kPa	
STC01	22 583	34 367	40 348	-	416	209	
STC02	22 583	46 973	63 702	-	379	226	
STC03	22 583	46 973	63 577	48 000	395	101	
STC08	4 539	12 380	29 786	-	319	244	
STC09	4 539	12 415	27 888	8 000	312	101	
STC15	1 579	11 237	24 084	-	248	246	
STC16	634	9 725	19 814	-	199	234	
STC17	1 579	11 153	24 176	4 000	221	101	
STC18	1 579	11 605	-	-	271	300	
STC24	16 746	38 591	52 706	-	321	195	
STC30	9 236	38 959	56 093	56 093	340	101	
STC31	9 236	38 959	56 093	-	340	233	
STC36	10 234	31 944	61 078	_	364	atm.	

Mass of hydrogen produced in RPV

Pressure in the containment (SBO)

(9

Pressure in the containment (LLOCA)

(9

Difficulties encountered

- Elliptical geometry of RPV bottom modeled as a truncated hemisphere
 - lower mass of steel comparing to real RPV (by 1371 kg)
- How to switch off the model of lower head failure ?
 - following of description in the Users manual was without success
- Incorrect functioning of ESF-PAR model observed:
 - in conditions of high H₂ and low O₂ concentrations in the containment after vessel failure and start of MCCI
 - discrepancy between mass and volume flowrates through PARs
 - negative PAR outlet temperature

Difficulties encountered

- Sometimes core barrel melted laterally (all material melted in the respective core cell) but the support plate still remaining in place
- How to model lower head for in-vessel retention concept (external cooling of RPV)
 - After the debris relocation to lower plenum (i.e. contact between debris and lower head) RPV failure occurs
 - Attempt to increase the number of axial levels in the lower head (3 instead of 2) was not a help
 - Heat transfer mainly in axial direction (downward) and only minor fraction transferred in radial direction
 - Is it possible to modify it ?

Foreseen activities

- Modification / improvement of the input deck
 Initial fuel enrichment of 4,87%
- Calculation of various scenarios with open reactor model
- Development of model for the Spent Fuel Storage Pool

Thank you for your attention.