MELCOR Modelling and Experience at NRG

NRG

Fabio Alcaro

17/03/2015

Outline

- Introduction
 - MELCOR use @ NRG
- Fukushima-Daiichi Unit-4 SFP
 - BWR vs SFP-BWR Models
 - Analysis of the Results
- SMR Steam Generator
 - TH modelling
 - CHF condition calculation
- Zircaloy Oxidation Model
- Conclusions

Introduction

Uses of MELCOR @ NRG:

Post-Fukushima SFP analyses

Spent Fuel Pool analyses in MELCOR (and other codes) in order to assess the coolability after a SFP LOCA scenario

□ Severe accident analysis for KERENA

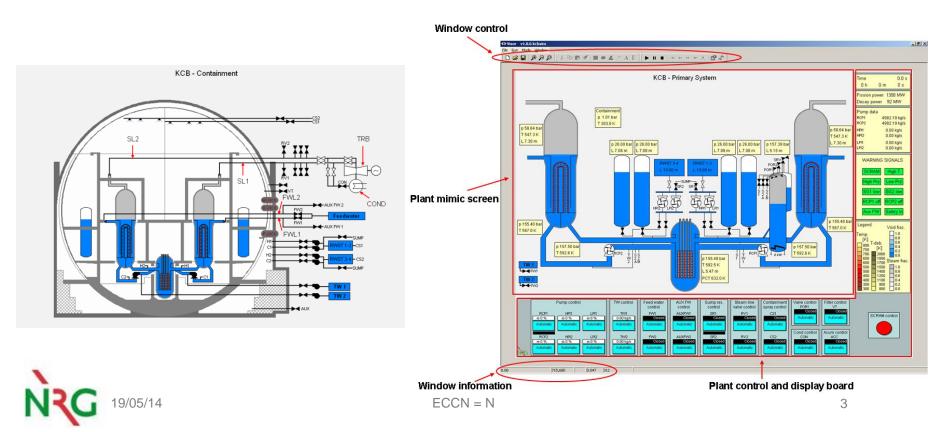
- (Part of) PSA Level 2 analysis
- Safety analyses for shutdown and power scenarios

□ HFR calculations for license renewal

- Severe accident analyses
- PSA Level 2 analysis

□ Severe accident analyses for the KCB power plant

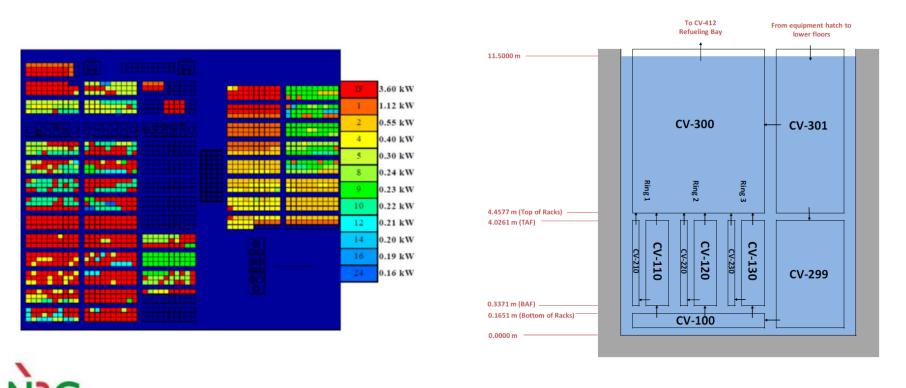
- Safety analysis calculations
- KCB power plant desktop simulator
 - Development of an interactive simulator of the Borssele NPP
 - Dutch regulator personnel training


GKN Dodewaard Power Plant

- PSA Level 2 analysis
- Direct containment heating analysis (comparison of MELCOR vs CONTAIN)

Introduction

Desktop simulator


- □ TH codes: MELCOR, RELAP, MAAP and SPECTRA (NRG code)
- Visor: NRG visualization software compatible with the most widespread TH codes

- □ SFP boil-off scenario with roof explosion (no water refilling)
- □ Low SFP initial water level (for speed-up purposes only)
- □ Model of the plant: SFP, refueling bay and environment
- □ CORE: 3 rings × 11 axial levels (6 for active fuel)

9/05/14

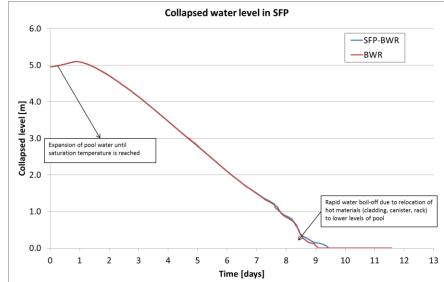
□ Comparison between BWR and SFP-BWR reactor type (MELCOR 2.1)

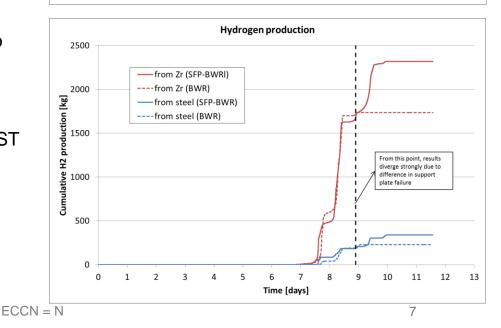
□ Rack component model:

/05/14

- > SFP-BWR: new component type 'rack' (mass in COR_KRK, surface in COR_RSA cards)
- > BWR: generic NS SUPPORT component
- □ Different treatment of the loads on the structures (other differences?)

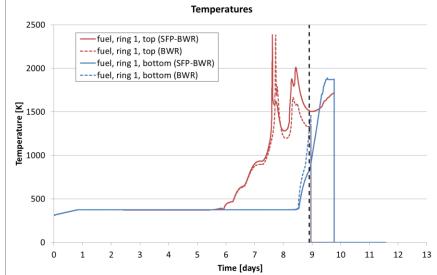
SFP-BWR	BWR
EDIT OF NS AND SS SUPPORT AND FAILURE OPTIONSIA **** IR =1234	EDIT OF NS AND SS SUPPORT AND FAILURE OPTIONS IA **** IR = 1 2 3 4
11 NS SUPPORT FIXED FIXED FIXED	11 NS SUPPORT BELOW BELOW BELOW
METAL STEEL STEEL STEEL	METAL STEEL STEEL STEEL
DRMIN(M) 1.00E-04 1.00E-04 1.00E-04	DRMIN(M) 1.00E-04 1.00E-04 1.00E-04
TMAX (K) 1700.00 1700.00 1700.00	TMAX (K) 1700.00 1700.00 1700.00
10 NS SUPPORT FIXED FIXED FIXED METAL STEEL STEEL STEEL DRMIN(M) 1.00E-04 1.00E-04 1.00E-04 TMAX (K) 1700.00 1700.00 1700.00	METAL STEEL STEEL STEEL
9 NS SUPPORT FIXED FIXED FIXED	9 NS SUPPORT BELOW BELOW BELOW
(etc.)	(etc.)
EDIT OF CORE COMPONENT MASSES (KG)	EDIT OF CORE COMPONENT MASSES (KG)
()	()
*** LOAD (kg) CARRIED BY SUP-STR = 1.5696E+05	*** LOAD (kg) CARRIED BY SUP-STR = 1.8738E+05
*** STRESS IN SUP-STR = 1.2647E+07	*** STRESS IN SUP-STR = 1.5098E+07


ECCN = N


Sequence of events of the accident scenario

Event	SFP-BWR	BWR
Gap release in rod group 1	648,300 s	654,200 s
Gap release in rod group 2	711,100 s	717,500 s
Core support structure has failed in cell ia= 2 ir= 3	722,400 s	
	failure was by over-temperature	
Core support structure has failed in cell ia= 2 ir= 1	843,900 s	773,700 s
	failure was by creep rupture	failure was by yielding
The lower head in segment 1 of ring 1 has failed from	843,400 s	
thru-wall yielding		
Beginning of debris ejection to cavity	843,400 s	
Core support structure has failed in cell ia= 2 ir= 2	855,700 s	
	failure was by creep rupture	
The lower head in segment 2 of ring 2 has failed from	855,700 s	
thru-wall yielding		
The lower head in segment 3 of ring 3 has failed from	855,700 s	
thru-wall yielding		
End of calculation	1,000,000 s	1,000,000 s

- The two models evolve similarly up to the rack base plate failure
- □ Rack base plate failure:
 - SFP-BWR: over-temperature + creep rupture
 - BWR: yielding
- Relocation of core material determines the base plate failure (highly variable process)
- □ SFP-BWR:
 - Failure of support plate in ring 3! (no core material above)
 - Radial relocation of core debris (is it meaningful for SFP application?)
 - Disable radial relocation by COR_TST card: code crash

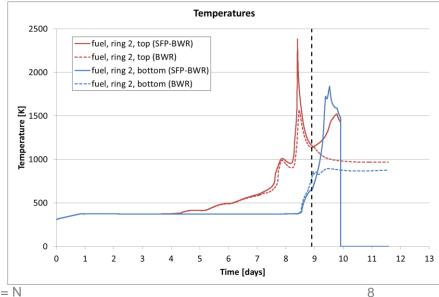

Ring 1:

□ Top of the fuel

Fuel temperature peaks are caused by exothermic reaction of Zr and steam

Bottom of the fuel

 Failure of the ring 1 support plate occurs at different time in the two models

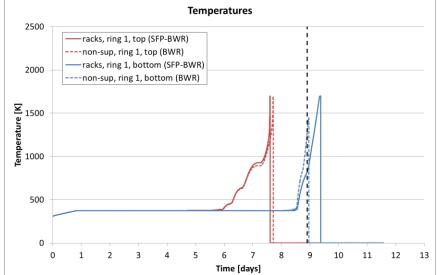

Ring 2:

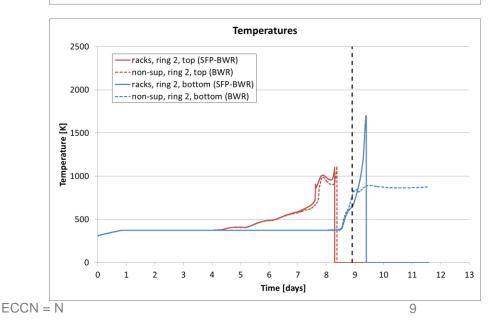
□ Top of the fuel

- Fuel temperature is lower in the BWRtype model due to relocation of the cladding
- Fuel temperature in lower cells where cladding is still present is over 2000 K

Bottom of the fuel

 Different behaviour because in the BWR-type model the support plate in ring 2 does not fail

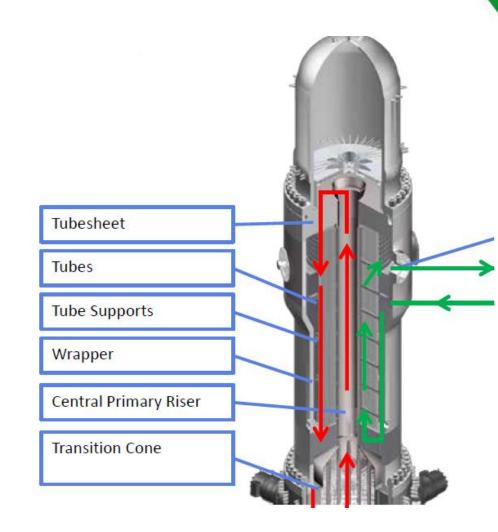



□ Rack model:

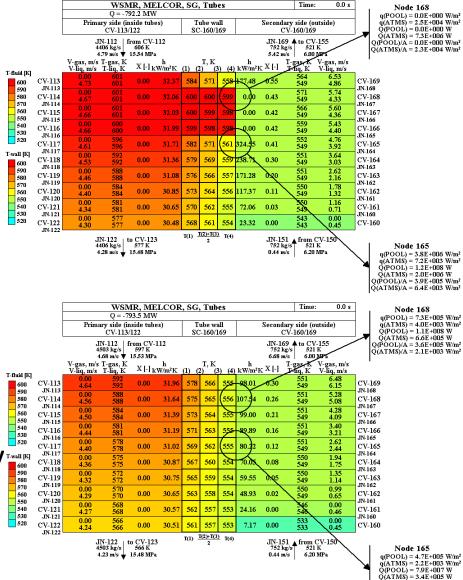
- BWR: standard NS non-supporting structure
- > SFP-BWR: dedicated rack component

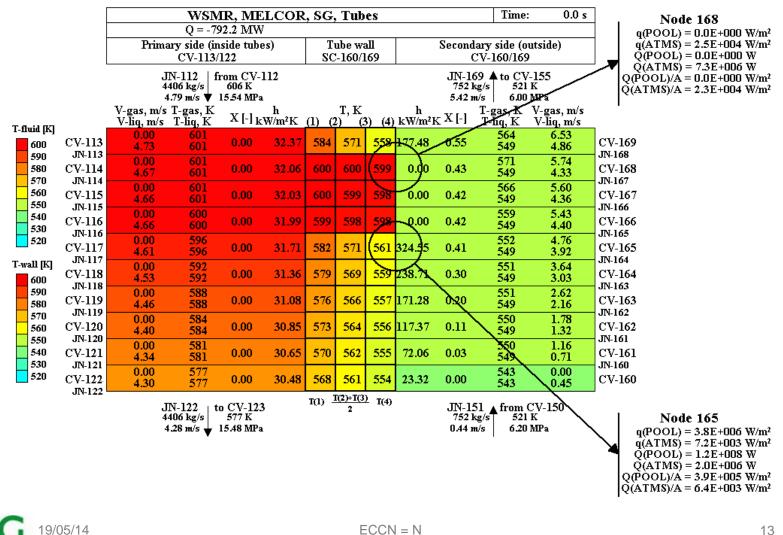
Rack temperature evolution is surprisingly similar

It seems that there is no particular differences in the COR model between the rack component and the standard NS structure

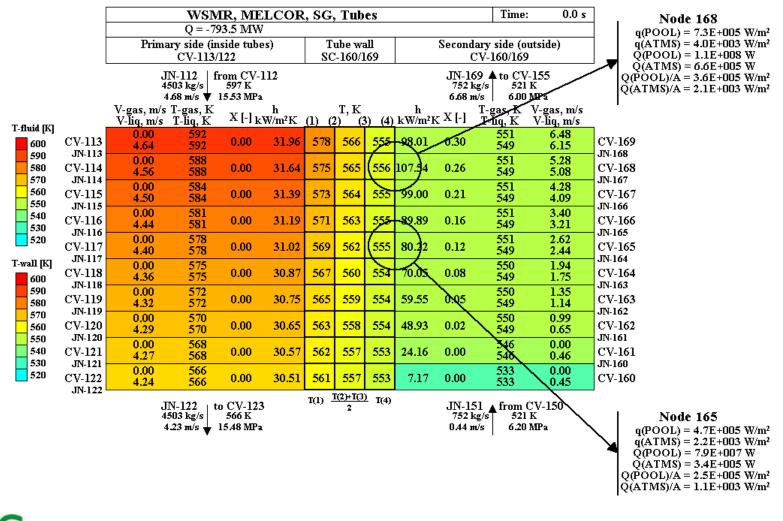


- MELCOR has been used to simulate a severe accident evolution of the Fukushima Daiichi Unit-4 spent fuel pool
- □ SFP applications of MELCOR lack of full validation (SNL analysis on Fukushima SFP4 only covers the boil-off phase)
- □ The new MELCOR 2.1 reactor types SFP-BWR and SFP-PWR includes a few enhancements towards SFP modelling application:
 - The new rack component is not considered in the load calculation of the support plate, which is consistent for SFP applications
 - There are not evidences that the rack component and the standard NS structures are treated differently in the COR package
- □ The SFP-BWR and SFP-PWR reactor types require the SFP to be modelled as a reactor core:
 - The radial ring model is not generally adequate for SFP application (generally the FAs are arranged in a checkerboard pattern alternating recently unloaded FAs with very old ones, for better coolability and criticality purposes)


- Westinghouse SMR is an integral PWR system
- □ The steam production is a twostage process:
 - The primary coolant heat is removed in a tube-shell HX (straight tubes) inside the RPV
 - The steam is separated from the secondary two-phase mixture in a dedicated component
- The SMR SG MELCOR model comes automatically from the SPECTRA code
 - ➤ HX power: 800 MW
 - > 9188 tubes, heated length ~ 6.1 m
 - The nodalization consists of 10 uniform axial nodes for the CVs (both tubes and shell) and HSs


- □ Post-CHF regime in the upper part of SG!
 □ Heat flux definition: $q_{atms} = \frac{Q_{atms}}{A_{atms}}$, $q_{pool} = \frac{Q_{pool}}{A_{pool}}$ □ MELCOR result, node 165:
 - $q = 3.8 \text{ MW/m}^2$ (close to CHF)
 - Q = 120 MW
 - $Q/A = 0.37 \text{ MW/m}^2$
- □ *q* definition appropriate for stratified flow
- ❑ Bubbly flow (~90% void) → overestimation of heat flux by about a factor of 10
- Problem can be partly remedied by changing the void fraction limit (sensitivity coefficient SC 4407, item 11):
 - > default: $\alpha_{MAX} = 0.40$
 - > changed to: $\alpha_{MAX} = 0.95$
- □ New results: no CHF.
- However, heat flux is still overestimated, by about factor of 2. Node 168:
 - > $q = 0.73 \text{ MW/m}^2$ (close to CHF)

19/05/14



Q(POOL)/Á = 2.5E+005 W/m Q(ATMS)/A = 1.1E+003 W/m

Sensitivity coefficient SC 4407 item 11: default α_{MAX} = 0.40

□ Sensitivity coefficient SC 4407 item 11: modified $\alpha_{MAX} = 0.95$

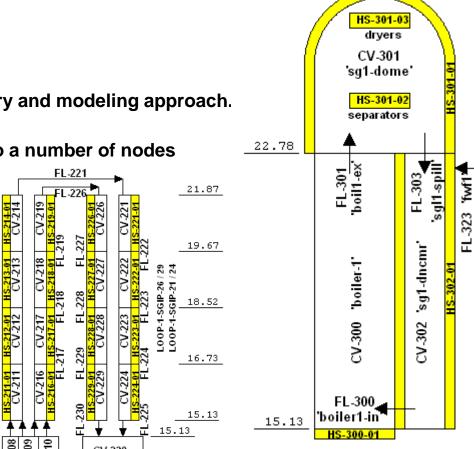
19/05/14

□ Summary:

Node 165	MELCOR	MELCOR	RELAP	SPECTRA	A Contraction
	$\alpha_{MAX} = 0.40$	$\alpha_{MAX} = 0.95$			
<i>q</i> (code output)	3.8	0.47	0.30	0.25	MW/m ²
Q/A (hand-calc.)	0.39	0.25	0.30	0.25	MW/m ²
Node 168	MELCOR	MELCOR	RELAP	SPECTRA	A
Node 168	$\mathbf{MELCOR} \\ \boldsymbol{\alpha}_{\text{MAX}} = 0.40$	$\frac{\text{MELCOR}}{\alpha_{\text{MAX}}} = 0.95$	RELAP	SPECTRA	A
Node 168 <i>q</i> (code output)			RELAP 0.34	SPECTRA	MW/m²

Conclusion:

- > In bubbly flow regime MELCOR overestimates heat flux
 - \checkmark by ~10 for default α_{MAX} ,
 - \checkmark by ~2 for α_{MAX} =0.95,
 - \checkmark no effect of α_{MAX} above 0.95.
- > Effectively MELCOR <u>underestimates CHF</u> by the above mentioned ratios.
- ➤ This conclusion was reached with MELCOR 1.8.6. Input converted to MELCOR 2.x → approximately the same results obtained with MELCOR 2.1.5540.


PWR SG MELCOR Model

□ Results of 1300 MW_{th} PWR, KCB, MELCOR 2.1

- > Secondary side modeled by a single volume, CV-300
- □ Summary
 - > No overestimation of heat flux.
- □ Conclusion
 - No effect in typical PWR SG geometry and modeling approach. Seems to be SMR-specific.
 - Is dividing secondary side of SG into a number of nodes (Control Volumes) a good idea?
 FL-221

Node 214	Node 221
$q(POOL) = 1.8E + 005 W/m^2$	$q(POOL) = 1.5E+005 W/m^2$
$q(ATMS) = 0.0E+000 W/m^2$	$q(ATMS) = 0.0E+000 W/m^2$
$\hat{Q}(POOL) = 5.8E+007 W$	$\hat{Q}(POOL) = 4.7E+007 W$
Q(ATMS) = 0.0E+000 W	Q(ATMS) = 0.0E+000 W
$Q(POOL)/A = 1.8E+005 W/m^2$	$Q(\tilde{POOL})/\dot{A} = 1.5E+005 W/m^2$
$\vec{Q}(ATMS)/A = 0.0E+000 W/m^2$	$\vec{Q}(ATMS)/A = 0.0E+000 W/m^2$

Node 211	Node 224
$q(POOL) = 3.0E + 005 W/m^2$	$q(POOL) = 9.8E+004 W/m^2$
$q(ATMS) = 0.0E+000 W/m^2$	$q(ATMS) = 0.0E+000 W/m^2$
Q(POOL) = 6.7E+007 W	$\tilde{Q}(POOL) = 2.2E+007 W$
Q(ATMS) = 0.0E+000 W	Q(ATMS) = 0.0E+000 W
$Q(POOL)/A = 2.9E+005 W/m^2$	$Q(POOL)/A = 9.7E+004 W/m^2$
$Q(ATMS)/A = 0.0E+000 W/m^2$	$Q(ATMS)/A = 0.0E+000 W/m^2$

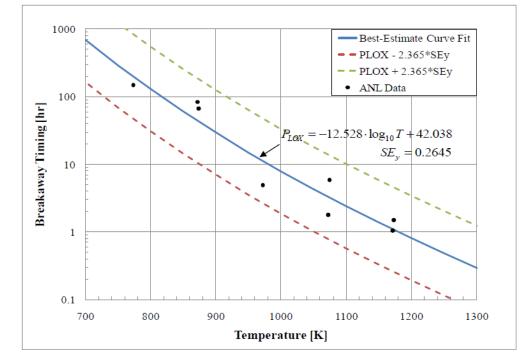
msiv i

28.98

Zircaloy Oxidation Model

MELCOR model:

 $\log_{10}\tau = 42.038 - 12.528 \cdot \log_{10}T$


Life function (T ≠ const):

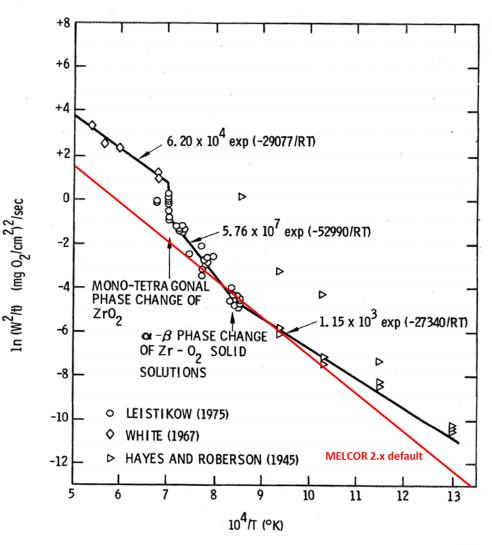
$$LF = \int_{0}^{t} \frac{\vartheta}{\tau} d\vartheta = 1$$

$$t = \sqrt{2\tau}, \qquad T = const$$

- ➢ LF is dimensional [s] (?)
- A test calculation (T=963 K) results in $t \approx 40,000$ s (in agreement with the Figure), while from the formula results $t \approx 283$ s

Modification of documentation:

$$LF = \int_0^t \frac{\mathrm{d}\vartheta}{\tau} = 1$$
$$t = \tau, \qquad T = const$$



R. Gauntt et al., Fukushima Daiichi Accident Study, SAND2012-6173

Zircaloy Oxidation Model

MELCOR 2.1 breakaway option (COR_OXB):

- By default the code adopts the prebreakaway model (red line in the plot) without rising warnings, which is nonconservative for safety assessment
- MELCOR 1.8.6 uses Powers model (NUREG/CR-0649) by default for oxidation, which has a different behaviour wrt version 2.1)
- It is envisaged to adopt post-breakaway model by default (more consistent with code version 1.8.6)

Conclusions

Troubles and Issues

Given Service Fukushima SFP4:

SFP-BWR reactor type: radial core debris relocation option failure (Word 10 of COR_TST card set to value ISPR=3, disable the two radial relocation models)

SMR Steam Generator:

SG secondary side: fine CV nodalization can lead to CHF condition encountered in high void fraction volumes when high heat flux is involved

□ Oxidation Model:

- Misdescription of the life function for time to breakaway in MELCOR 2.1 documentation
- Different default behaviour for the treatment of post-breakaway oxidation model with respect to the previous MELCOR 1.8.6

Summary

- □ Wide range of applications of MELCOR
- □ Many years of user experience: code versions from 1.8.2, 1.8.3, 1.8.4, 1.8.6 (mostly used in the past) to recent 2.x applications

Thank you for your attention! Questions?

NZG