6th EMUG meeting European MELCOR User Group

ADVANCES IN THE ENEA ACTIVITY ON PLANT APPLICATIONS

F. Mascari, F. De Rosa

ENEA - Via Martiri di Monte Sole, 4 - 40129 Bologna - Italia

Contents

- ENEA BWR Activities
- BWR MELCOR Nodalization References
- Computational Tools Information's
- Use of the Graphical User Interface
- BWR MELCOR Nodalization Description
- BWR Steady State Analyses
- ENEA PWR Activities
- PWR MELCOR Nodalization References
- Computational Tools Information's
- PWR MELCOR Nodalziation Description
- PWR Steady State Analyses
- Conclusions

ENEA BWR Activities Framework

- ❑ The ENEA activities related to the MELCOR code are oriented to the simulation and evaluation of severe accident evolutions and source term for "safety assessment", mainly focusing on the characteristics of NPPs located at the Italian border.
- Concerning BWRs, in order to start this activity, a general, investigative work and code simulations of the Fukushima accident will be performed.
- In order to develop the FUKUSHIMA unit 1 MELCOR Nodalization, following the SANDIA approach reported in the Fukushima Dai-ichi Accident Study (SAND2012-6173), the nodalization will be based on the Peach Bottom reactor (different power but similar reactor).
- □ The activity is part of a work planned in the ambit of a national project funded by the Economic Development Ministry (ENEA-MSE agreement).

BWR MELCOR Nodalization References

- The references used to develop the BWR Peach Bottom nodalization are :
 - BOILING WATER REACTOR TURBINE TRIP (TT) BENCHMARK, Volume I: Final Specifications, NEA/NSC/DOC(2001)1
 - Severe Accident Source Term Characteristics for Selected Peach Bottom Sequences Predicted by the MELCOR Code, NUREG/CR-5942

BWR MELCOR Nodalization References

NEA/NSC/DOC(2001)1

Figure A.1. RETRAN nodalization diagram

NUREG/CR-5942

COMPUTATIONAL TOOLS INFORMATION'S

Severe Accident Code	MELCOR 2.1.5310
Symbolic Package 🧹	SNAP 2.2.6
Plotting Tools	APTPLOT 6.5.1
Operative System	Window 7, 64 bit

ENER

PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

AGENZIA NAZIONALE

Use of the GRAPHYCAL USER INTERFACE

User Effect: different results for the cladding temperature in the ISP25 test from different users adopting the same code and BIC

Hindawi Publishing Corporation Science and Technology of Nuclear Installations Volume 2008, Article ID 874023, 16 pages doi:10.1155/2008/874023

In relation to the code assessment (thermal Hydraulic or severe accident code), in order to reduce the <u>unavoid user effect</u> influencing the validation results, documented in the

- User effect on the transient system code calculations, NEA/CSNI/R(94)35, January 1995
- Good practices for user effect reduction, NEA/CSNI/R(98)22, November 1998
- Approaches and Tools for Severe Accident Analysis for Nuclear Power Plants, IAEA Safety Reports Series No 56, 2008

The CSNI suggestion are followed:

	CSNI
User training	
Improved user guidelines	
User discipline	
Quality assurance	
Code improvement	
Graphical user interfaces	Allow the code users more time to check the input deck, interpret the data, and run time control
Develop input decks by eliminating inconsistent choices GUI would also isolate the code users from the computational engine automatically preventing the user from selecting an option.	

START TO USE MELCOR DIRECTLY WITH SNAP

BWR MELCOR Nodalization Description

RPV

8

BWR Modelling features

Equivalent core heat structure: Critical Pool Fraction :

> CPFPR: 0.05 CPFAR: 0.95

Allow the heat transfer to both phases reducing the numerical problem

Right Boundary Type	Convective Condition	2	?
Right Boundary Mass	● True False	2	?
Rt. Boundary Vol.	🗄 CV 100 (CORE_EQ) 🔊	2	?
Right Boundary Flow	[1] External Flow	2	?
Right Minimum Pool	CPF_POOL_UP_CORE(0.05) (-) 4	2	?
Right Maximum Pool	CPF_ATM_UP_CORE(0.95) (-) 4	2	?

Numeric option of SNAP has been used

BWR Modelling features

BWR MELCOR Nodalization Description

Primary Containment

NUREG/CR-5942

BWR MELCOR Nodalization Description

SECONDAE MEN

Volumes and flowpaths in the primary and secondary containment at Peach Bottom Figure 4.3

ENE

BWR MELCOR Nodalization Description Flow Path Reference

Problem Definition

Table 4.3. Flowpaths used in the MELCOR model of Peach Bottom

Flowpath No.	From volume	To volume	Flowpath name	Area (ft²)	Fraction open initially	Control function
10	100	101	In-Pedestal to Ex-Pedestal	92.6	1.0	
11	101	102	Ex-Pedestal to Top-Drywell	673.7	1.0	
12	101	150	Vent Opening to Legs	288.5	1.0	
13	101	103	Ex-Pedestal to Annulus	2.3	1.0	
14	100	103	In-Pedestal to Annulus	34.4	1.0	
15	102	103	Top-Drywell to Annulus	56.9	1.0	
20	150	200	Legs Exit	286.3	1.0	
21	200	150	Vacuum Breaker	20.0	0.0	Yes
3114	310	320	Intact Recirculation Pump	3.7	1.0	
312	310	320	Internal Jet Pumps	7.3	1.0	
323	320	330	Lower Plenum to Bypass	66.2	0.0129	
324	320	340	Lower Plenum to Channel	85.5	0.6174	Yes
335	330	350	Bypass to Steam Separators	66.2	1.0	
345	340	350	Channel to Steam Separators	85.5	0.6756	
356	350	360	Steam Separators to Dome	51.3	1.0	
361	360	310	Dome to Downcomer	281.0	1.0	
362	360	200	Automatic SRVs	1.3	0.0	Yes
363 ^b	360	200	Manual ADS (5 SRVs)	0.5	0.0	Yes
364 ^b	360	200	Manual 1 SRV	0.1	0.0	Yes
370 ^b	310	100	Leakage of Recirculation Pumps	2.9×10^{-5}	0.5	
370Aª	310	101	LOCA 1	3.92	1.0	
371	320	100	Leakage of Control Rod Pumps	3.6×10^{-5}	0.5	
372 ^a	310	101	LOCA 2	3.92	1.0	
398	100	408	Drywell Head Seals Failure	0.4	0.0	Yes
399	320	100	Vessel Breach	0.1	0.0	Yes
400	200	401	Wetwell Cont. Failure	7.0	0.0	Yes
401	401	402	Torus to Level-135	92.6	1.0	
402	402	404	Level-135 to Level-165	357.4	1.0	
403	402	403	Level-135 South to North	269.0	1.0	
404	402	410	Leak to Environment of Level-135- South	0.3	1.0	

Flowpath No.	From volume	To volume	Flowpath name	Area (ft ²)	Fraction open initially	Control function
405	403	409	Level-135 South to Turbine Bldg.	30.1	0.0	Yes
406	403	410	Leak to Environment of Level-135- North	0.3	1.0	
407	404	406	Level-165 to Level-195-Shaft	357.4	1.0	
408	404	405	Level-165-South to North	471.5	1.0	
409	404	410	Leak to Environment of Level- 165-South	0.3	1.0	
410	405	410	Leak to Environment of Level- 165-North	0.3	1.0	
411	406	408	Level-195 to Refueling Bay	357.4	1.0	
412	406	407	Level-195-South to North	803.0	1.0	
413	406	410	Leak to Environment of Level- 195-South	0.3	1.0	
414	407	410	Leak to Environment of Level- 195-North	0.3	1.0	
415	408	410	Blowout Panels of Refueling Bay	240.0	0.0	Yes
416	408	410	Leak to Environment of Refueling Bay	1.2	1.0	
417	409	410	Leak to Environment of Turbine Bldg.	3.1	1.0	

Table 4.3. Flowpaths used in the MELCOR model of Peach Bottom (cont.)

"This flowpath is only used in the LOCA sequence.

^bThis flowpath is only used in the station blackout sequences.

Problem Definition

BWR MELCOR Nodalization Description Isolation Condenser

14

Steady State Analyses SNAP Job Stream

Steady State Analyses SNAP Animation Model: Fluid Conditions

	MELCOPE	PEF
Total jet: Plangl Files	12548.86	12215 Kg/s
Jet Pump: A Head	22.98	23.05 m
Jul Pump B Head	22.98	23.95 m
At Planp. A differ lisit veboaty	4.28 m/s	-4.8034 m/s
lat Pump B-differ and velocity	4.20 min	4.0034 m/s
RCPUNP A Heat	208.905	218.408 m
INC PLIKIP ID Head	208.965	218.408 m
RC PUMP A Mass Film Reter	2154.00 kg/s	254.98 Kph
PC PUMP B. Mass Fize Bate	2154.00 kg/a	2154.58 Kgo
Phoe volucity of parts A statistics	11.403 ms/a	. n. 382 os/s
Play vehicity of pump B surption	8.43 m/a	8.382 m/s
Sanction Pressure A	7120379.0 Pa	7115389 Pie
Sunction Pressane B	7120379.0 Pa	T115399 PH
Cize Fire By pass 5	14	54
Tinket com	952.74 K	5211.46 K
NEC *	2.07	6.63
Core Exit Quelly**	15.0	12.1
Diartes Processaries	7057256.5 Pa	7 IDDEG Pa
PW man first rate	1090.37 kg/s	1679 kg/a
	3224291392	10.00000.00

Core Power

3.0E9

2.0E9

1.0E9

0 900.0

_CFVALU_21 _CFVALU 22

-CFVALU 23

1000.0

Fluid Condition +30.0 dK) SL: 1990.37 kg/s Sat. Shearn Sat. Legat 296.75 kg/s 1970.33 kg/a 10.0 dK) 287.80 kg/a PW: 1093.37 kg/s 10876.53 kg/w T_L : 552.30 K T_V - 501.73 K 12845.94 kgra T 5 500.00 K 2154.01 kg/s 4270.74 kg/h 4270.74 Rg/a 2153.99 kg/s 2153.99 kgp/s TL 352.01 K 552.01 K V 323 70 K 519.70 K S 551.04 K 3392.04 K 894.30 kg/s 154.00 kg/a Platitudation Plange A Republic Pumpli 4 803.94 kg/a 12040-49 kg/s 6424.43 kg/s 6424.43 kg/s Lower Plenam

Time: 984 s

Steady State Analyses SNAP Animation Model: Table with selected parameters

PARAMETERS	MELCOR	REF
Total jet Pump Flow	12848.86	12915 Kg/s
Jet Pump A Head	22.98	23.195 m
Jet Pump B Head	22.98	23.195 m
Jet Pump A differ exit velocity	4.26 m/s	4.6634 m/s
Jet Pump B differ exit velocity	4.26 m/s	4.6634 m/s
RC PUMP A Head	208.965	216.408 m
RC PUMP B Head	208.965	216.408 m
RC PUMP A Mass Flow Rate	2154.00 kg/s	2154.56 Kg/s
RC PUMP B Mass Flow Rate	2154.00 kg/s	2154.56 Kg/s
Flow velocity at pump A sunction	8.43 m/s	8.382 m/s
Flow velocity at pump B sunction	8.43 m/s	8.382 m/s
Sunction Pressure A	7120379.0 Pa	7115389 Pa
Sunction Pressure B	7120379.0 Pa	7115389 Pa
Core Flow By pass %	14	14
Tinlet core	552.74 K	551.45 K
RC*	5.67	6.63
Core Exit Quality**	15.0	13.1
Dome Pressure	7057256.5 Pa	7.033E6 Pa
FW mass flow rate	1690.37 kg/s	1679 kg/s
Power to the core fluid	3224251392	3.29E9 W

POWER transferred to the fluid

HS-QFLUX-POOL (NameHS,sn):

Heat flux to pool at boundary surface sn of heat structure Name HS

HS-QFLUX-ATMS(NameHS,sn):

Heat flux to atmosphere at boundary surface sn of heat structure NameHS.

HS-POOL-FRAC(NameHS,sn)

Fraction of boundary surface sn of heat structure NameHS in the pool of its boundary volume.

ENEA PWR Activities Framework

- In the framework of the European Project CESAM (Code for European Severe Accident Management) WP40-SAM., ENEA is involved in the development of a "PWR 900 like" with MELCOR code for benchmark the ASTEC code.
- □ In the framework of the ENEA-MSE agreement, our activities related to the MELCOR code are mainly related to the evaluation of severe accident source term for "safety assessment activity", mainly focusing on the characteristics of NPPs located at the Italian border.

PWR MELCOR Nodalization References

- The references used to develop the PWR900 like MELCOR nodalization are :
 - L. FOUCHER, ASTEC V20R3, PWR900 like ASTEC Input Deck, Rapport n PSN-RES/SAG/2013-451.
 - L. FOUCHER, ASTEC V20R3, PWR900 like ASTEC Steady state calculation, Rapport n PSN-RES/SAG/2013-466.

COMPUTATIONAL TOOLS USED

Severe Accident Code	MELCOR 2.1.5310
Symbolic Package	SNAP 2.2.6
Plotting Tools	APTPLOT 6.5.1
Operative System	Window 7, 64 bit

PWR MELCOR Nodalization Description

PWR MELCOR Nodalization Description Details of RPV and LOOP 1

22

PWR Modelling features

Equivalent SG ascending side heat structure: **Critical Pool Fraction :**

Equivalent SG descending side heat structure: **Critical Pool Fraction :**

Equivalent PRZ model: Thermodyn. Switch: Equilibrium

	•	2
0.0 (m/s)	${\triangleleft} \flat$	2
0.0 (m/s)	40	2
	E,	P
	•	2
	•	2
	•	2
	•	2
		P
	2	3

CPFPR: 0.05 CPFAR: 0.95

CPFPR: 0.05 CPFAR: 0.95

General	Show I	Disa	able	be	*
lame	PRZ		n	?	
lumber		8	29	?	
Description	<none></none>	•	29	8	
hemodyn. Switch	[1] Equilibrium	•	B	8	
low Flag	[0] Not Defined	•	B	8	=
уре	sinactive >		2	?	
ool, Fog Switch	[0] Pool, fog allowed	•	B	8	
ctive/Inactive	[0] Active	•	2	8	
el. of Atmos.	0.0 (m/s)	1	Ð	8	
elocity of Pool	0.0 (m/s)	10	2	?	F
Tow Area	Default	٦	2	?	
hermodynamic Input	[3] Pool and Atmosphere	•	2	?	
ool Flag	[3] Both	•	2	?	
Vater State	[0] Saturated	•	2	?	
apor State	[0] Saturated	•	2	?	
egacy IC Format	O True False		3	?	

Steady State Analyses - Steady state operating point parameters of the MELCOR VS ASTEC code

PARAMETERS	ASTEC	MELCOR (at about 7000s of calculation)
Pressurizer Pressure (bar)	155.16	155.63
Pressurizer Level (%)	50	~ 50
Cold Leg 1 Flow Rate (kg/s)	4735.6	4781.7925
Core Flow Rate (kg/s)	13928.0	13808.121
Upper Head Flow Rate (kg/s)	275	269.2
Inlet Core Temperature (K)	560	564
Outlet Core Temperature (K)	594.5	596
Separator Pressure (bar)	58.023	58.359
SG MFWS Flow Rate (kg/s)	512	510
Recirculation Ratio	4.15	4.1

Steady State Analyses SNAP Animation Model: Fluid Conditions

25

Steady State Analyses SNAP Animation Model: Pressure conditions

TIME: 6928.0 s

- Research activities in which ENEA uses MELCOR code are in progress and mainly focused on PWR and BWR "safety assessment studies".
- These research activities are developed in the ambit of an Italian project and in several International research frameworks.
- A conceptual study of Small Modular Reactors with MELCOR is planned.
- ☐ ENEA plans to give an active contribution in CSARP and EMUG.