Exceptional service in the national interest

Wetwell Modeling Nodalization Study and SNAP Post Processing Jesse Phillips

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- BWR Mk I Wetwell
 - Evaluate modeling practices
 - Single CV representation
 - Multiple CV representation (16 CVs)
 - Modified version investigated
 - Near/Far Field (2 CV representation)
 - Two flow path natural circulation flow
- SNAP Post Processing
 - Example videos
 - Using Python scripts for post processing calculations

Investigating Modeling Practices

- Purpose
 - Single wetwell volume representations do not determine local saturation conditions well for station blackout accidents
 - How does this impact pressurization response, fission product scrubbing, results... ?
 - Initial investigation of potential modeling avenues compared to available test data
- Relevance
 - Fukushima unit 1 energy removal was almost entirely dependent on the lowest setpoint SRV actuations
 - The result: isolated heating of the suppression pool
 - With power available, operators will cycle SRV operations to promote more uniform suppression pool heat up.
 - Fukushima unit 2 underwent nearly 60 hours of RCIC only operation
 - Fukushima unit 3 underwent 36 hours of RCIC operation and SRV cycling
 - Provides more data to investigate the containment pressure response

BWR Mark I Containment

Single Control Volume Model

- Single CV representation is a typical modeling practice for severe accident analyses
 - Attempts to capture curvature (though not relevant for this analysis)
- SPARC90 model activated
 - Steam/Pool interaction
 - RN removal if present
- Losses of SRV line ignored

Single CV MELCOR Comparison

6

16 CV Model Depiction

- Inertial and friction length – wetwell torus segment lengths
- Flow area internal cross-sectional area (torus minor diameter)

16 CV Results

16 CV Results

Results

- A single flowpath connecting two CVs supports only unidirectional pool water transport
 - Does not permit natural circulation determination of any kind
- Difficult to determine appropriate losses between pool segments
- No enhanced circulation by plume
- Instability enforced circulation observed
- No point comparing these results with data

16 CV Modified Model Depiction

- Inertial and friction length – set to a "small" length (0.01m)
 - Reduces multiphase shear effects, permits higher fluid acceleration

16 CV Modified Results

16 CV Modified Results

Comparison With Data

Two CV Model (WIP)

- This configuration should permit a "more" straight forward model for enforcing appropriate mixing
 - Attempts to capture near field and far field effects
 - 2x multiplier on FL area (to account for both sides and remove numerical error (round-off) instability oscillations)
- SPARC90
 - No attempt to place stacked cells due to SPARC pool height consideration

Near-Far Field Results

N/F Modified

- Two flowpath definition to permit MELCOR the opportunity to determine buoyancy driven natural circulation
 - Same reduced lengths as mentioned prior
 - Radius/2 used to determine
 WW bottom flow area
 (note: Pool level is below the midpoint of the wetwell and no CCF coupling was applied)
 Top FL Region
 Top FL Region
 Bottom Flow

N/F Modified Results

N/F Modified Comparison

N/F Modified Results

- Need to explore dependency on selected flow area
- The increased complexity of two offset flowpaths makes the model more difficult to understand
 - Early over-prediction (under mixing)
 - Later under-prediction (over mixing)
- Appears to produce improvements in the overall predictions with little added modeling effort
- Will likely over predict subcooling and a later containment pressurization breakaway due to local saturation conditions
- May demonstrate issues at saturation due to the rapid level swell when voiding begins to occur

Questions and Comments

Before Moving on to a quick SNAP Tutorial on Python Post Processing

Ref: Cook D.H., "Pressure Suppression Pool Thermal Mixing", NUREG/CR-3471, ORNL/TM-8906, 1984

SNAP Post Processing

- SNAP animations
 - Can utilize raw plot file data or Python Script generated data
- Creating a Python Script in the SNAP animation model
 - Select "Python Data Source" in the navigation tree (see next slide)
 - Click the Edit icon, a red E, next to "Initialization Source"
 - Create desired new "Virtual Channel Names" by clicking on the Add button. The new VCNs will be available as plot element (in place of the "Data Sources" identified in the plot files
 - Specify the source (example is provided)
 - If you wish, specify an initial value (example is provided)
 - Click the Edit icon next to "Transient Source"
 - Create your transient python script
 - Connect new VCN to animation element

Python Data Source

Navigation Tree

Define Source and Create Channels Editing Initialization Source

Sandia National Laboratories

Add Virtual Data Channels

Created Virtual Data Channels 🔨

Define Source ("Master" is named "Data Sources" See Nav. Tree

Initialize Virtual Data Channels

ľ	O Initialization Source		×
	<u>File</u> <u>E</u> dit <u>Insert</u> Example		
	Vser Defined Data Channels		
	Virtual Channel Name	>	Add
			Remove
	RCIC Prop1		
	RCIC Prop2		Sort
	EWL Prop1		
	FWL Prop2		
	DowncomerLevel		
	env Cs rat		
	env_Xe_rat		
	env_I2_rat		
	stm_dome_Xe_rat		
	stm_dome_Cs_rat		
	stm_dome_l2_rat		
	DW_Xe_rat	=	
	DW_Cs_rat		
	DW_I2_rat		
	WW_Xe_rat		
	WW_Cs_rat		
	WW_I2_rat	•	
	* -		
	S0 = source("Master") # define the source		^
	rip1BladeCount = 0		
7	rip1BladeValue = 1.0		=
	rip9BladeCount = 0		
	rip9BladeValue = 1.0		
	LPF_RHR_A_Count = 0		
	LPF_RHR_A_Value = 1.0		
	LPF_RHR_BC_Count = 0		
	LPF_RHR_BC_Value = 1.0		-
	2:19		Apply
	Close		

Python Script Calculations Editing Transient Source

Domiconcreterer		
env_Cs_rat		
env_Xe_rat		
env_12_rat		
stm_dome_Xe_rat	Storo data fr	om 🗐
stm_dome_Cs_rat		
stm_dome_l2_rat	source (Mas	tor) plot
DW_Xe_rat	source (mas	
DW_Cs_rat	filo	
DW_I2_rat	me.	
WW_Xe_rat		
WW_Cs_rat		Storo virtual
WW_12_rat		Sille villual
		channol data
#Env Cs		
<pre>value1 = S0("RN1-TOTMAS-2_2") # Class 2 radioactive mass</pre>		for use in
value2 = S0("CFVALU_9000") # CF calculating mass released to environment		
value4 = S0("RN1-TOTMAS-2_16") # Class 16 radioactive mass		animation
value6 = S0("RN1-TOTMAS-2 17") # Class 17 radioactive mase		animation
value5 = (value1 + (0.5116 * value4) + (0.7348 + value6)) # Decompose Classes	into Radioactive Cs Ma	ass Only
if (abs(value2) < 1.0e-7):		-
setChannel("env Cs rat", value2) # if Cs in environment is small return sm	all value	
value3 - (value2/value5) # Fraction of release material in environment		
satChannel/"env CS mat" value3) # Puthon data channel named env CS mat se	t to fraction of relea	ee material in environment
seconamier(env_cs_rat , varues) + rython data channer hamed env_cs_rat se	to to fraction of felea	
		•
<u> </u>		· · · · · · · · · · · · · · · · · · ·
257.27		Apply
251.21		Арріу
Close		

Linking Animation Element with Python Virtual Channel

 Set the Data Source Field for any drawing element; Dial, Gauge, Polygon, etc. to utilize the "Python Data Source"

1 🖞 Linear Dial 🏻 👚			E	
▼ General	Show Disabled	?	Ē12	1.0 - O Select from All Data Sources
Data Source	- Master (MC_Step)	?	Ē	
X-Axis Alignment	0.5	?	14	
Y-Axis Alignment	0.5	?	E 16	0.6 Master (MC_Step)
Background Color	255,255,255	?		Python Data Source
Border	None 💌 E	?		
Command Menu	-not set-	?	E 20	
Fill Background	🔾 True 🖲 False	?	E-	0.0 L
Font	Dialog Televice Dialog, Plain, 12	?	22 24	
Foreground Color	51,51,51	?	E- 26	3
Numerical Format		?		
Orientation	Left 🔻	?	E 28	None
Scale Factor	1.0	?	Ē30	OK Cancel
ToolTip Text	******	?	E-32	
Data Channel 1	-not set-	?	Ē	

Linking Animation Element with Python Virtual Channel

Select the Virtual Data Channel that was created

1	🔪 🖞 Linear Dial									
▼ General	Show Disabled	?	E 12	1.0						
Data Source	🗣 Python Data Source 🛛 🔊	?								
X-Axis Alignment	0.5	?		0.8 -						
Y-Axis Alignment	0.5	?	Ē 16	0.6						
Background Color	255,255,255	?								
Border	None 💌 🛃	?		0.4						
Command Menu	-not set-	?	Ē20	0.2						
Fill Background	◯ True	?		لے _{0.0}						
Foot	Dialog 🔽 12 💌	9		d o b						
FUIL	Dialog, Plain, 12	8	E24							
Foreground Color	51,51,51	?	Ē ₂₆							
Numerical Format		?								
Orientation	Left 🔻	?	E 28							
Scale Factor	1.0	?	Ē30							
ToolTip Text	******	?	E							
Data Channel 1	-not set-	?								
Channel 1 Color	85,85,255	?	E 34							
Data Channel 2	-not set- ST	?								

Questions

