

UJD SR activities and severe accident management

Ms. Lubica KUBISOVA, UJD SR, Slovakia Mr. Jan HUSARCEK, UJD SR, Slovakia

Highlights

- Nuclear installations in Slovakia
- Legislative framework for nuclear safety
- ► UJD SR
- Action plan safety enhancements of NPPs in Slovakia
- MELCOR activities at UJD SR
- MELCOR input model

Nuclear Installations in Slovakia

BOHUNICE SITE

facility	status	lice	nce holder		
NPP A-1	HWGCR	decommissione	эd	JAVYS , a.s	•
NPP V-1 (EBO1,2)	WWER-440/230	decommissione	эd	JAVYS, a.s.	
NPP V-2 (EBO3,4)	WWER-440/213	in operation		SE, a.s.	
ISFS	wet type	in operation		SE, a.s.	
treatment of	different technologie	es in operation		JAVYS, a.s.	ı
RAW and SF					
New NPP	feasibility stud	ly		JESS, a.s.	
MOCHOVCE SITE					
facility		status	lice	nce holder	
NPP EMO1,2	WWER-440/213	in operation		SE, a.s.	
Ra-waste Repository	near surface	in operation		JAVYS , a.s.	
NPP EMO3,4	WWER-440/213 u	nder constructior	1	SE, a.s.	

Existing Nuclear Sites in Slovakia

Legislative Framework for Nuclear Safety

- Legal instruments of EU
- International treaties, conventions and agreements (EURATOM treaty, Convention on nuclear safety)
- National legally binding instruments (acts, decrees)
- Legally binding decisions issued by regulatory bodies annually on specific subjects
- Regulatory guides (not legally binding)

A list of legislative documents available on UJD SR web site – www.ujd.gov.sk

UJD SR and its competences

- UJD SR is a central state administration authority; UJD SR was established in 1993 by Act No.2/1993 on Governmental Organization and Central State Administration Organization (Competency Act)
- Chairman and Vice chairman are appointed by government
- In the field of nuclear safety of nuclear installations the main responsibilities:
 - Legislation
 - Review and assessment
 - Licensing
 - Inspection and enforcement
 - Emergency preparedness
 - Nuclear material safeguards
 - Transport of nuclear and radioactive material
 - Public information
 - International co-operation

Action plan and SAM projects

- Measures implementation plan of stress tests performed
- It reflects recommendations of communication between European Commission, European Council and European Parliament
- ► Targets of achievement:
 - Reinforcement of the 3rd, 4th and 5th levels of Defense in Depth
 - Increase NPP resistance to relevant extreme external events
 - Creating the conditions for further increasing of nuclear safety and security
- Main tasks
 - Increase resilience of nuclear units to extreme external events (torrential rains, strong winds, earthquakes)
 - Increase slack time for the provision of basic safety functions in case of total loss of AC power or final heat removal
 - Severe accident management and mitigation of radiological consequences

Action plan and SAM projects

- The SAM project is divided into following subprojects:
 - Reactor cavity flooding including "SIPHON"
 - Depressurization of primary circuit
 - Hydrogen management in containment
 - Vacuum breaker in containment
 - Alternative coolant system
 - Alternative electric power supply system
 - Information sources I&C PAMS and control
 - Long-term heat removal from containment

Action plan implementing schedule

- Some measures have been implemented immediately after the Fukushima accident
- Short-term to be finished by 2013
 - Medium-term to be finished by 2015
- Additional measures, which may result from analyses defined by mediumterm measures, will be implemented after 2015

(2)

"SIPHON" and valve for coolant inflow into the reactor cavity through the ventilation system


Bottom part of reactor shielding with floaters for outside cooling of RPV

Depressurization of primary circuit

Passive autocatalytic hydrogen recombiners in the containment

Vacuum breaker in the containment

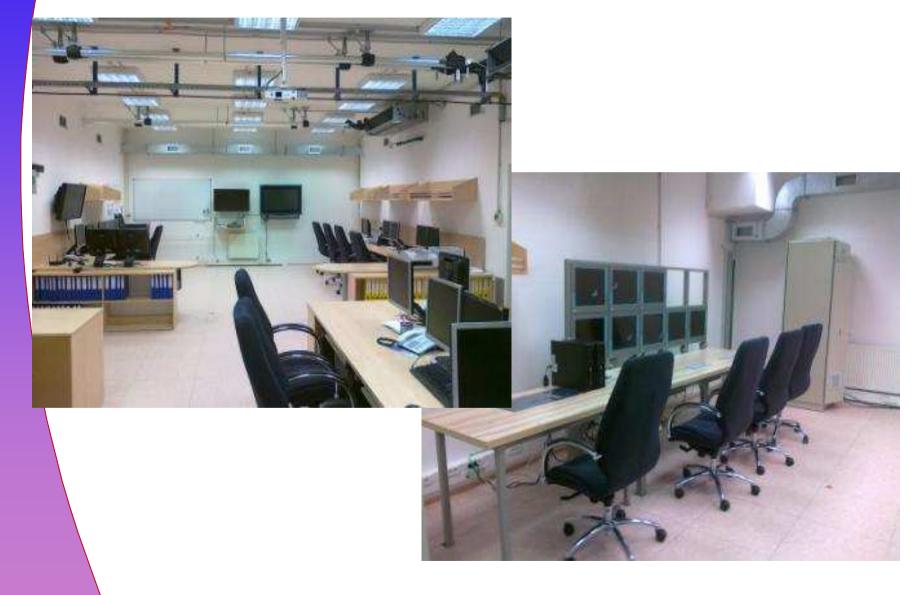
Alternative coolant system - RPV corium flooding and containment spray

Alternative coolant system – RPV corium flooding and containment spray

Alternative (seismically qualified) electric power system

Battery monitoring system

Fire truck with high-pressure pump – 1/unit


Mobile 0,4 kV DG – 1/per unit

Bunkered emergency center

Bunkered emergency center

Water supply to steam generators by mobile pump – exercise

MELCOR activities at UJD SR

- **Started within the SWISSLOVAK project (1996-1999) MELCOR 1.8.3**
 - Training in both deterministic and probabilistic safety assessment of NPPs
 - Input deck development for NPPs in Slovakia:
 - V2 Bohunice NPP and Mochovce NPP (both VVER 440/213)
 - V1 Bohunice NPP (VVER 440/230)
 - Analyses of selected severe accidents covering various type of scenarios (SBO, LOCAs – from LB to very small, SGTR, interfacing system LOCA, Steam line break outside the containment)
 - More specific tasks:
 - Development of accident scenarios and estimation of radiological consequences for emergency planning activities of the UJD emergency response center
 - Regulatory review of severe accidents risk and potential impact of selected SAM actions for V2 Bohunice NPP (kind of limited scope PSA L2)
 - Calculation of benchmark sequence (SBO) within PHARE PR/TS/03 SA mitigation for VVER 440/213 (various users with the same code)
 - Code-to-code comparison within EVITA project (2000-2003) SBO and SBLOCA scenarios calculated with MELCOR 1.8.3 and ASTEC V.03 and V1.0

(1)

MELCOR activities at UJD SR

MELCOR 1.8.5

- Agreement with US NRC relating to participation in the US NRC Program on Severe Accident Research signed in June 2001 for 5 years
- VVER-440/V-213 input deck adaptation for version 1.8.5 and improvement in cooperation with GRS, Germany
 - analyses for generic VVER 440/213
 - various scenarios calculated: SBO and LOCA 20 mm, LOCA 2x500 mm with/ without sprays in the containment
 - shutdown scenario with opened reactor vessel man-induced LOCA accident
- MELCOR 1.8.5 results for scenarios of SBO (2004) and LOCA 200 mm (2006) used for code-to-code comparison with ASTEC code (V1.0 through V2.0r2p2) within SARNET and SARNET2 projects (2004-2013)

New Agreement with US NRC signed in January 2014 (MELCOR 2.0)

- Foreseen activities input deck adaptation/ development for Slovak VVER-440/V213 NPPs and MELCOR 2.x
- Independent regulatory review of safety reports

MELCOR 2.0 input deck development

(1)

- Primary and secondary circuits
 - 3-loops model consisting of:
 - a simple circulation loop with pressurizer
 - double and triple circulation loops
 - 69 control volumes (14 for RPV, 11 CVs per 1 loop, 4 CVs for PRZ, 4 CVs for HAs, 13 CVs for secondary circuit)
 - 94 flow paths, 199 heat structures
 - a relatively simple SG model:
 - primary side of SGs axially divided into 3 sections, each with 3 vertical levels of HS representing heat-exchange tube bundle
 - a single volume used for secondary side
 - Core region
 - Divided into 8 radial rings (including annulus of RPV) and 19 axial levels
 - 312 fuel rods located within Ring 1, 2, 4, 5 and 7
 - 37 control rods located within Ring 3 and 6
 - Fuel in active core within axial levels 11 18; fuel section of control assemblies within axial levels 3 – 6
 - BWR model used corresponds better to VVER-440 core with fuel rod canisters, however limitations for core shroud modeling

MELCOR 2.0 input deck development

RPV bottom

- 10 heat nodes in 9 segments
- Particulate debris:
 - porosity =0.3
 - particle equivalent diameter =0.025 m
- RN package
 - 17 material classes specified
 - Combination of Cs and I2 atoms to form CsI molecules modelled
 - Formation of CsMo has not been activated
 - Revised CORSOR-Both model for high burn-up fuel used for RN release from fuel

Containment

- 77 control volumes + 3 CVs (reactor hall, surrounding rooms, environment)
- 151 flow paths (including 2 FL paths for permanent leakages)
 - 180 heat structures + 7

Bubble condenser – 3 levels at the bottom modelled individually, upper levels 4 – 12 grouped by 3 levels per modelling horizontal level, a single air trap volume communicates with each group of 3 vertical levels

(2)

MELCOR 2.0 input deck development

- Engineering safety features and operator actions
 - Emergency Core Cooling systems:
 - High-Pressure and Low-Pressure Injection Systems (3 trains per system)
 - Hydro-accumulators (4 HAs)
 - Active and passive spray systems in the containment
 - Passive Autocatalytic Re-combiners (33 PARs of high capacity, 16 PARs for DBA; modeled using ESF package)
 - Specific flow paths allowing to:
 - aggressively depressurize the primary and/ or secondary circuits
 - discharge the Bubble Condenser trays
 - flood the cavity by water (located on the floor of SG boxes)
 - Emergency Source of Coolant possible use for feeding SS, ECCS, cavity flooding, feeding of SGs, etc.
 - Redefinition of concrete composition in the reactor cavity
- Redefinition of decay heat and initial radionuclide composition
- Redefinition of some material properties
- In total app. 18 000 lines

Thank you for the attention

