

Coupling MELCOR 1.8.6 and GASFLOW for Enhanced Simulation of Hydrogen Distribution During Accident Analysis

Institute for Nuclear and Energy Technologies (IKET) Karlsruhe Institute of Technology (KIT)

Tobias Szabó 5th Meeting of the European MELCOR User Group (EMUG) Mai 02-03, 2013, Stockholm

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- 1. Introduction
- 2. GASFLOW code
- 3. MELCOR-GASFLOW coupling
- 4. Test of MELCOR-GASFLOW coupling
- 5. Conclusion

1. Introduction

- Severe loss of coolant accident in PWR with H₂ generation in core
- Temporarily inhomogeneous H₂ distribution in containment
- Danger of fast deflagration or Deflagration to Detonation Transition
- \rightarrow 3D-CFD approach to resolve local flow
- PSA-2

Integral analyses with MELCOR \rightarrow enveloping scenarios Detailed analyses of H₂ distribution with 3D-CFD code (e.g. GASFLOW) Combustion simulations with 3D-CFD code (e.g. COM3D)

1. Introduction

- Subsequent MELCOR and GASFLOW analyses
- GASFLOW predicts different and more realistic containment pressure compared to MELCOR (result of International Standard Problem 47)
- Inconsistency during subsequent MELCOR and GASFLOW analyses:
 - \rightarrow different containment pressure
 - \rightarrow different leak flow rate
 - \rightarrow effect accident progression
- If the more realistic containment pressure from GASFLOW is used in MELCOR, the accident progression predicted by MELCOR will differ.

\rightarrow Coupling of MELCOR and GASFLOW

2. GASFLOW code

- Developed at KIT
- 3D-CFD, Finite Volume Method
- Local distribution of H₂ in containment
- **Evaluation of combustion criteria** (σ , λ)
- Simple combustion simulation
- Heat transfer at structures
- Turbulence modelling
- Mitigation
- Successfully validated: PANDA, MISTRA, TOSQAN, THAI, PHEBUS, HDR, BMC, HYJET, etc.
- Application: KONVOI, EPR, KPC, APR1400, VVER1000

\rightarrow Reliable prediction of local H₂ distribution and containment pressure

3. MELCOR–GASFLOW coupling

- Coupling MELCOR accident and GASFLOW containment TH analyses
- Data exchange at leak in coolant pipe

6 Mai 03, 2013 T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced Inst. Simulation of H2 Distribution During Accident Analysis Karls

asynchronous: codes use their own time steps

- Check correct functioning of the coupling
- Analysis of a severe accident
 - Coupled MELCOR and GASFLOW calculation
 - Severel stand-alone calculations for comparison
 - Coupled calculation first, stand-alone calculations afterwards

Primary, secondary systems	Containment
Coupled MELCOR	Coupled GASFLOW
Stand-alone MELCOR 🛹	Stand-alone GASFLOW
	MELCOR Containment

- Stand-alone containment calculations obtain their source term from coupled MELCOR (data table)
- Stand-alone MELCOR calculation obtains containment pressure from coupled GASFLOW (data table)
- Coupling time step of 0.1 s, data table time step 0.1 s

8 Mai 03, 2013 T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced Simulation of H2 Distribution During Accident Analysis Karlsruhe Institute of Technology (KIT)

<u>Scenario</u>

9

Severe LOCA

- 150 cm² leak in hot leg of PWR
- Simplified, generic containment
 - Inner room, 18 000 m³
 - Outer room, 50 000 m³
 - Separated by rupture disks

Generic containment

10 Mai 03, 2013 T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced Simulation of H2 Distribution During Accident Analysis

Steam mass flow rate through leak

- **Differences between Coupled MELCOR** and Stand-alone, dt=5.6ms
- → Coupling error from explicit data exchage
 → Major differences between Stand-alone calcualations, dt=6.5ms dt=0.1s
 → Coupling error smaller than ordinary MELCOR uncertainty
- ordinary MELCOR uncertainty
- \rightarrow Coupling functions correctly enough

- Coupled MELCOR, dt=5.6ms
 - Stand-alone, dt=5.6ms
 - Stand-alone, dt=0.1s

Containment pressure

- Coupled GASFLOW and Coupled MELCOR agree
- Coupled GASFLOW and Stand-alone GASFLOW agree
- \rightarrow Coupling functions correctly
- MELCOR Containment (standalone) differs considerably as regards to GASFLOW pressure
- Rather trust in GASFLOW pressure (very good results in ISP-47)
- → Effect accident progression calculated by MELCOR

5. Conclusion and outlook

- MELCOR and GASFLOW coupled: external, explicit, asynchronous
- Coupled MELCOR vs. Stand-alone MELCOR
 - Overall agreement
 - Deviations from coupling smaller than ordinary uncertainty in MELCOR
- Coupled GASFLOW vs. Stand-alone GASFLOW
 - Perfect agreement

\rightarrow MELCOR-GASFLOW coupling functions correctly

- GASFLOW vs. MELCOR Containment (stand-alone)
 - Different H₂ distribution, large LP volumes in MELCOR homogenize H₂
 - More realistic containment pressures in GASFLOW
 - Feedback of realistic containment pressure to accident progression accounted for in MELCOR-GASFLOW coupling

\rightarrow MELCOR-GASFLOW coupling more realistic and exact results

5. Conclusion and outlook

<u>Outlook</u>

- Comparison of integral MELCOR calculation and integral coupled MELCOR-GASFLOW calculation
- Other coupling project: in-vessel retention, Philipp Dietrich
 - Validate MELCOR against LIVE experiments (behaviour of core melt in lower plenum)
 - Coupling of enhanced models for behaviour of core melt in lower plenum

Thank you for your attention.

Contacts:

Tobias Szabó (Dipl.-Ing.)

Phone: +49 721 608-28320 Email: tobias.szabo@kit.edu

Frank Kretzschmar (Dipl.-Phys.)

Phone: +49 721 608-22436

Email: frank.kretzschmar@kit.edu

16Mai 03, 2013T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced
Simulation of H2 Distribution During Accident AnalysisInst. Nuclear a
Karlsruhe Inst.

Accident scenario

- 150 cm² leak in hot leg of PWR
- High and low pressure injection
- Recirculation mode not available (no sump water injection)
- No additional water sources available \rightarrow loss of cooling

Verification of correct data exchange

- Example: containment pressure GASFLOW → MELCOR
- Coupling time step 0.5 s
- Data exchanges at 4 s, 4.5, etc.
- New value available for plot at next plot time point
- Explicit in time → constant value in MELCOR
- \rightarrow Data exchange correct
- → Coupling error depending on coupling time step

18 Mai 03, 2013T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced
Simulation of H2 Distribution During Accident Analysis

Pressure, [bar]

H₂ outflow into containment

integral

19 Mai 03, 2013 T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced Simulation of H2 Distribution During Accident Analysis

Typical, very coarse nodalization Advanced nodalization for integral analyses

Refined vertical and horizontal **Nodalization**

20

T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced Mai 03, 2013 Simulation of H2 Distribution During Accident Analysis

21 Mai 03, 2013 T. Szabó: Coupling of MELCOR and GASFLOW for Enhanced Simulation of H2 Distribution During Accident Analysis