

<u>SFP model – WWER-</u> <u>1000</u>

Kaliopa Mancheva 🍑

Reliability, Safety and Management Engineering and Software Development Services

Engineering and Software Development Services Table of contents

- \circ SFP model
- \circ Results from calculations
- $_{\circ}\,$ Problems and questions

RISK ENGINEERING LTD.

Reliability, Safety and Management

General information

- SFP model was developed as part of PSA level 2 study for unit 5 and 6 of KNPP
- 5 accident scenarios taken from PSA level 1:

	Scenario	Containment status	Cooling system (TG)	Alternative cooling system (SS, TB30, 0TM)	Spray System	
	1	Isolated	Failed	Failed	Up to tank depletion	
	2	Isolated	Failed	Failed	Failed	
	3	Isolated	Failed	Up to tank depletion	Failed	
	4	Not Isolated	Failed	Failed	Failed	
Aŗ	5	Not Isolated	Failed	Up to tank depletion	Failed	

Spent Fuel Pool configuration

Spent Fuel Pool model - general

• DATA:

- Reactor type SFP-BWR
- FA number 563
- Control rods B₄C difference from reactor (¹⁰B included in rack steel)
- Lower head flat
- All racks are occupied with FA (163 from reactor core)
- Axial power profile uniform – 9-th day after reactor shutdown
- Water level 28,8 m (about 2,5 m above racks)

Fuel assembly distribution

Spent Fuel Pool – CV nodalization

Spent Fuel Pool – core

- Radial rings:
 - 1 ring 163 assemblies (assemblies removed from reactor Qw > 1.00E4 [W])
 - 2 ring 149 assemblies (1.00E3 ≤ Qw ≤ 3.00E3 [W])
 - 3 ring 125 assemblies (Qw ≤ 1.00E3 [W])
 - 4 ring 126 assemblies (3.00E3 ≤ Qw ≤ 1.00E4 [W])
 - 5 ring –outer volumes (free of assemblies)
- Axial distribution:
 - 1 ÷ 7 (support construction)
 - 8,19 and 20 (1 lower and 2 upper unheated core part)
 - 9 ÷ 18 (heated core part)

RISK ENGINEERING LTD. *Reliability, Safety and Management Engineering and Software Development Services*

Spent Fuel Pool – core

Lower elevation	Height	UPPER_t	UPPER_2	UPPER_3	UPPER_4	UPPER_5	
25.553	0.172	120	220	320	420	BOK_15	Unheated core part
25.286	0.267	119	219	319	419	BOK_14	
24.933	0.353	118	218	318	418	BOK_13	
24.58	0.353	117	217	317	417	BOK_12	
24.227	0.353	116	216	316	416	BOK_11	
23.874	0.353	115	215	315	415	BOK_10	
23.521	0.353	114	214	314	414	BOK_9	. <u>.</u>
23.168	0.353	113	213	313	413	BOK_8	ba Da
2.815	0.353	112	212	312	412	BOK_7	ore
22.462	0.353	111	211	311	411	BOK_6	σ
22.109	0.353	110	210	310	410	BOK_5	ate
21.756	0.353	109	209	309	409	BOK_4	£
21 44	0.316	108	208	308	408	BOK_3	Unheated core part
	0.06	107 Support plate	207 Support plate	307 Support plate	407 Support plate	507 Support plate	BOK_2
21.38	0.04	100		000	100		
	0.04	Support columns	Support columns	Support columns	Support columns	Support columns	BOK_1
21.34	0.06	105 Support plate	205 Support plate	305 Support plate	405 Support plate	505 Support plate	
21.28							
	0.145	104 Support columns	204 Support columns	304 Support columns	404 Support columns	504 Support columns	
21.135	0.145	103 Support	203 Support	303 Support	403 Support	503 Support columns	CV020
20.99	0.145	102 Support	202 Support	302 Support	402 Support	502 Support columns	
0 945		columns	columns	columns	columns		
20.040	0.145	101 Support columns	201 Support columns	301 Support columns	401 Support columns	501 Support columns	

Spent Fuel Pool – cavity model

- Cavity 1 volume of the smaller pool –volume CV488 connected to cavity 1 simulates ring 1 + bypass part
- $_{\circ}$ Cavity 2 :
 - Represents partially volume of the bigger pool same volume as for LP is used (CV020)
 - Spreading model of debris
- Dependent failure of the support structures in bigger pool is simulated based on the debris surface(CAV_ASURF)

Spent Fuel Pool - cavity model cont'd

- Cavity 3 the containment rooms bellow SFP
- Cavity 4 volume of the transport corridor - activates in case of transport hatch failure

Spent Fuel Pool – results

23 22

21

20

0

200000

evaporates first

 Water in bigger pool is ejected after inner wall failure

600000 Time [s] 800000

1000000

400000

1200000

Spent Fuel Pool - results (contd.)

Clad temperatures in smaller pool

- Fuel assemblies in ring 1 (smaller [#] pool) fails by temperature criterion
- Fuel assemblies in ring 2-4 (bigger pool) fails due to support column

Clad failure by CF actuation

Clad temperatures in bigger pool - ring 2

ilure

Spent Fuel Pool - results (contd.)

Hydrogen generation - COR and CAV

 CO generation is an issue in KNPP due to concrete chemical composition Hydrogen generation is not significantly less than in reactor

Spent Fuel Pool – results (contd.)

Debris mass in cavities

- SFP outer walls failure about 2.3 days (55 hours)
- Very slow radial ablation debris temperature is low (1540 K)

RISK ENGINEERING LTD. Reliability, Safety and Management Spent Fuel Pool – problems and guestions

- ?WWER SFP are divided into 3 main pools (4-th one is for fresh fuel)
- Simulation of debris interaction with solid structures
 after inner wall failure
- Non-supporting structures are forbidden for SFP-BWR
- B₄C oxidation problem run failure (bug 1088)
- Cavity overfilled overcome with time step change.
 This behaviour of the model stays unresolved

Reliability, Safety and Management Engineering and Software Development Services

TRANSFE	R PROCESS EDIT				
			IN TP	MATL	MASS IN – MASS OUT
				NUMBER	(KG)
NUMBER	OF IN TRANSFER	PROCESSES = 8	101-B	1	-2.08897E+00
IN TP	NUMBER OF	NUMBER OF H IN – H	4	2	-1.15161E+00
OUT				3	-7.31975E+02
	MASSES IN TH	IERMO IN (J)		4	-6.32131E-01
101-A	6 9) -1.53237E+12		5	-1.37216E+00
101-B	17 1	1 0.00000E+00		6	-1.36156E+03
301-A	5 9	0.00000E+00		7	-1.38686E+03
301–B	17 1	1 0.00000E+00		8	-5.18548E+03
401–A	5 9	0.00000E+00		9	-2.81536E+03
401-B	17 1	1 0.00000E+00		10	-7.70171E+04
501-A	5 9	0.00000E+00		11	-1.81261E-01
501-B	17	1 0.00000E+00		12	-6.54818E+00
				13	0.00000E+00
				14	0.00000E+00
INTP	MAIL MAS	S IN - MASS OUT		15	0.00000E+00
101 4	NUMBER			16	0.00000E+00
101-A				17	0.00000E+00
	5 -0.401	TSE+03			
	4 0.0000				
	6 4 5 0 0	40E+00			
	0 4.309	402+02			
			\sim		
			The	mass out	is much more the
014			IN (IV		4077 (release)

RISK ENGINEERING LTD. *Reliability, Safety and Management Engineering and Software Development Services*

CONTACT DETAILS

Headquarters: 10, Vihren str. Sofia 1618 Bulgaria Tel. + 359 2 8089 703 Fax: +359 2 9507 751 riskeng@riskeng.bg www.riskeng.bg

RISK ENGINEERING LTD. *Reliability, Safety and Management Engineering and Software Development Services*

THANK YOU!