

NUCLEAR SAFETY INSTITUTE OF RUSSIAN

ACADEMY OF SCIENCES

MELCOR 2.1

Verification on MARVIKEN Critical

Flow Experiments

Dr. Nastasya Mosunova

EMUG-2013 Stockholm, Sweden May, 2-3, 2013

Outline MELCOR 2.1 critical flow model Marviken experiments MELCOR 2.1 nodalization scheme Calculation results including sensitivity study Conclusions

Goal of the work

To verify MELCOR critical flow model

To suggest ways of code improvement

MELCOR Critical Flow Model

Calculation of "critical" pressure difference value

$$\Delta P_{critical,j} = \xi_j \frac{\rho_j c_{s,j}}{2}$$

Comparison of "critical" pressure difference value with actual pressure difference obtained as difference of linearly projected new pressures. If

$$\Delta P_j^{\tilde{n}} > \Delta P_{critical,j}$$

correction of local friction (form) loss coefficient to limit flow velocity by critical one

$$\xi_{j}^{corrected} = \xi_{j} \frac{\Delta P^{\tilde{n}}_{j}}{\Delta P_{critical.j}}$$

Using of new (corrected) local friction (form) loss coefficient in global solution with no sub-iteration

IBRAE RAN

Calculation of Sonic Velocity

- Only atmosphere correlation based on [R. B. Bird, W. E. Stewart, and E. N. Lightfoot Transport Phenomena, John Wiley & Sons, New York (1960), Equation 15.5-42, with identification of the sound speed as (γP/ρ)^{1/2}]
- Only pool RETRAN model [RETRAN-02—A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Systems, Volumes 1-3, NP-1850-CCM, Electric Power Research Institute, Palo Alto, CA (May 1981)]
- Both phases MOODY choking model

MARVIKEN Experimental Facility

- Marviken Power Station
 Facility (100 km from
 Stockholm)
- Conducted in 1978-1979
- 27 experiments
- Pressure vessel
 - Isolated using glass wool
 - 24.55 m high
 - 5.2 m inner diameter
 - Made of low alloy steel
- Discharge pipe
 - Total length 6308 mm
 - Inlet diameter 752 mm
 - Made of stainless steel

MARVIKEN Experimental Facility

The pressure vessel with net volume 425 m³, maximum design pressure 5.75 MPa and maximum design temperature 272°C

The discharge pipe consisting of the ball valve and pipe spools which house the test nozzle upstream instrumentation

The nozzles and rupture disc assemblies: a set of nozzles of specified lengths and diameters to which the rupture disc assemblies were attached

The containment and exhaust pipes consisting of

- The drywell with net volume 1934 m³
- The wetwell with net volume 2144 m³

The fuel element transport hall with net volume 303 m³, the ground level 3.2 m diameter and the upper 0.4 m diameter exhaust pipe

Nozzles

Nozzle type	D	L	L/D	L1	L2	L3	L4	R	Used in tests
no	mm	mm		mm	mm	mm	mm	mm	no
1	200	590	3,0	0	100	100	100	100	13, 14
2	300	290	1,0	55	150	150	150	150	6, 7
3	300	511	1.7	0	150	150	150	150	25, 26
4	300	895	3,0	55	150	150	150	150	1, 2, 12
5	300	111	3.7	0	150	150	150	150	17, 18, 19
		6							
6	500	166	0.3	0	225	225	250	250	23, 24
7	500	730	1.5	0	225	225	250	250	20, 21, 22, 27
8	500	180 9	3.6	0	181	156	241	250	15, 16
9	509	158 9	3.1	55	156	225	241	250	3, 4, 5, 8, 9, 10, 11

Initial and Boundary Conditions, Tests 1-5

Test No.	1	2	3	4	5
Steam dome P, MPa	4.94	4.98	5.02	4.94	4.06
Saturation temp., C	263	264	264	264	251
Degree of nominal subcooling in the lower vessel, C	17-23	38	15-22	37	33
Min. fluid temperature in the vessel, C	238	226	243	224	218
Initial temperature at nozzle inlet, C	226	213	223	201	205
Mass of water and steam	287	284	274	274 286	
Initial level in the vessel	17.84	17.41	17.06	17.59	17.44

Initial Conditions (1)

The tests with water initially subcooled to
15 °C or more
Tests numbers: 1, 2, 3,
4, 5, 6, 7, 8, 11, 12, 13,
16, 18

Initial Conditions (2)

The tests with water initially subcooled to 30 °C or more
Tests numbers: 15, 17, 21, 22, 24, 26, 27, 22

Initial Conditions (3)

The tests with water
initially subcooled to
less than 5 °C
Tests numbers: 9, 10,
14, 19, 20, 23, 25

MELCOR 2.1 Nodalization Scheme

The nodalization scheme consists of
21 control volumes in the vessel
2 volumes in discharge pipe
1 volume in the noozle
1 time-independent volume for cavity

24.55 VESSEL1 Area 2.408 21.00 VESSEL2 Area 13.90 20.00 VESSEL3 Area 28 54 19.00 VESSEL4 Area 21.62 18.00 VESSEL5 Area 21.62 VESSEL6 Area 21.62 16.00 VESSEL7 Arca 21.62 15.00 VESSEL8 VESSEL9 13.00 VESSEL10 Area 21.14 VESSEL11 Area 19.8 VESSEL12 VESSEL13 VESSEL14 Area 20.90 VESSEL15 VESSEL16 Area 20 64 VESSEL17 Area 20.64 VESSEL18 Area 20.64 VESSEL19 Area 20.64 VESSEL20 Area 20.42 VESSEL21 Area 15.62 TUBE Area 0.444 -2.41 TUBE Area 0.4441 -5.57 -7.38 NOZZLE-EXIT CAVITY

Test 1 Modeling

Test 17 Modeling

IBRAE RAN

Sensitivity Study: Nodalization

Default nodalization of the vessel was chosen typical for MELCOR and as a compromise between results' accuracy and time step size

 The detailed nozzle nodalization does not influence on the results

IBRAE RAN

Sensitivity Study: Discharge Coefficients

Discharge coefficients - multipliers for the critical flow values calculated by implemented into the MELCOR code models.

FL_USL – User Specified Loss Coefficients

(3) CDCHKF

Choked flow forward discharge coefficient.

(type = real, default = 1.0, units = dimensionless)

(4) CDCHKR

Choked flow reverse discharge coefficient.

(type = real, default = 1.0, units = dimensionless)

Nozzle type No.	1	2	3	4	5	6	7	8	9
Discharge coefficient	0.98	0.96	0.97	0.92	0.94	0.92	0.92	0.94	0.94

Sensitivity Study: FL_GEO, FL_USL, FL_LME

Flow path opening height (FL_GEO: FLHGTT and FLHGTF)

Interphase interaction length (FL_LME)

EMUG - 2013, Stockholm, Sweden

Sensitivity Study

Use of choking coefficients calculated based on a particular nozzle/break geometry instead of default value for all calculations is recommended

For transients with critical flow and high velocities the value of "opening height" parameter is recommended close to the height of connecting volumes with the purpose to take into account steam entrainment to a leak

 Influence of the "interface interaction length" variation to results is contradictory and not recommended for using other than default value

Conclusions

MELCOR 2.1 satisfactorily models the Marviken critical flow experiments though overestimate critical flow rate for two-phase conditions at the nozzle entrance and doesn't predict pressure oscillations during initial few seconds of the blow-down transient

The accuracy mainly depends on the choking coefficients in the nozzle, which should be calculated based on the nozzle geometry, and size of nodes in the vessel

 Main distinctions between experimental data and calculations results are caused by

Absence of superheated fluid model in MELCOR

Moody correlations or their implementation used for twophase flow

Way of code improvement: replacement or correction of Moody correlations

