

Wir schaffen Wissen – heute für morgen

PSI air oxidation model in MELCOR: Part 2: Analysis of experiments and model assessment

L. Fernandez-Moguel; J. Birchley

European MELCOR User's Group, Stockholm, May 2013

- PSI air oxidation model, main assumptions
- Description of QUENCH-10 and QUENCH-16 experiments
- Assesment of PSI air oxidation model with Q-10 and Q-16
 - Pre-oxidation
 - Oxygen consumption
 - Reflood
- Conclusions

PAUL	SCHE	RER	NS	TITUT
	—			
_				—

PSI "air" oxidation model

• The model has been implemented in a local version of M1.8.6_YV

Zr +	0 ₂	\rightarrow	ZrO_2		Δ F	۲°	-1098.3 kJ/mol(Zr)
Zr +	$2H_2O$	\rightarrow	$ZrO_2 +$	2H ₂	ΔH	l °	-588.4 kJ/mol(Zr)

- Steam oxidation takes place only in the absence of oxygen
- Nitrogen is not a reactive species but it is consider as a catalyze species.
- Breakaway of the oxide film has a dominant role during air oxidation
- Breakaway condition is defined as an upper limit on effective oxide thickness
- The steam and air kinetics are very similar without breakaway, when breakaway occurs the kinetics are accelerated.
- Now that the model is successfully implemented in MELCOR we can perform validation studies against integral data.

PAUL SCHERRER INSTITUT

QUENCH-10 -16 transient

•Q16 was qualitatively very similar but quantitatively different •Main differences:

- Lower pre-oxidation (lower T)
- Lower O₂ concentration
- Longer starvation

PAUL SCHERRER INSTITUT

Q-10 steam phase

- Maximum temperature and hydrogen generation in fair agreement during the preoxidation phase
- The calculated results with the new code version M186_PSI0 are consistent with Melcor186

- M186, M186_PSI-0, M186_PSI1001 (bkwy steam off and air on), M186_PSI1001 (bkwy steam off and air off), did not calculate starvation during the air phase.
- M186_PSI1001 did calculate breakaway but later than observed
- Only M186_PSI1000 predicted oxygen starvation and did calculated breakaway

• A very mild excusion and hydrogen generation was observed during reflood

- M186_PSI1000 slightly over predicted it
- M186_PSI-0, M186_PSI1001 (bkwy steam off and air on), M186_PSI1001 (bkwy steam off and air off), slightly under predicted it.

- The calculated temperatues and hydrogen generation are in good agreement with the experimental results
- Similar results are obtained with SCDAP when the same physical models are used

- M186_PSI0 and M186_PSI1002 calculates similar results as expected
 - small difference due to slight diff in oxidation kinetics
- Breakaway was expected during Q16 and it was calculated when breakaway was enabled (M186_PSI1001)
- There was no indication from thermal response or oxygen consumption that breakaway occurred in the experiment.
- This is consistent with the simulation where breakaway was disabled (M186_PSI1002).
- Post-test examinations showed influence of nitrogen at locations which were not oxygen starved.
- All cases predicted earlier oxygen starvation than observed in the experiment even with breakawy disabled.

- The temperatures start to increase when the oxygen is starved
- The calculation where breakaway was disabled (M186_PSI1002) gave the closest temperature agreement

Q-16: H2 generation during the air phase

- The model can handle steam and air at the same time
- First the oxygen is consumed and after complete consumption of the oxygen the steam is consumed.

PAUL SCHERRER INSTITUT

Q16: Reflood

- High temperatures were observed during reflood
- Neither of the codes reproduced it:
 - M186_PSI0, SS3.5_PSI_Bkwy-off, and SS3.5_PSI_Bkwy-on predicted no excursion
 - M186_PSI1001 and M186_PSI1002 calculated a mild excursion
- Neither of the codes calculated anywhere near the total hydrogen production observed during reflood

• Possible mechanism for triggering the strong oxidation:

- ZrN formation

- Experiment showed evidence of nitrogen uptake (about 29g).
- Nitrides may have weakened the oxide layer
- the thermo stresses during reflood promoted breakaway
- Neither MELCOR nor SCDAP are able to predict a nitride reaction

- reoxidation of the ZrN and nitrogen release during reflood

- evidence of nitrogen release (about 24g) during the reflood
- During this time the reaction: $ZrN + 2H2O = ZrO2 + 1/2N2 + 2H2 \Delta H^{\circ} 252.8 \text{ kJ/mol}(Zr)$ and lasted for about **200s**.
- This would correspond to ~2.15 kW of oxidation heat and ~ 7g of H2. Nowhere near to the experimental value.

– dissolution of the oxide into an α -Zr(O) region

- An oxygen stabilized α -Zr (O) region may have been formed by diffusion of oxygen from the oxide layer into the underlying metallic layer during the long period of oxygen starvation.
- oxide layer reduced to α -Zr(O) and increased its susceptibility to oxidise and react with nitrogen.
- Experience on SET has shown that the α -Zr(O) layer reaction with nitrogen plays an important role during oxidation
- The codes are not able to model the α -layer formation.

Conclusions

- The PSI breakaway model was successfully implemented in M186 and assessed against the air ingress experiments Q10 & Q16.
- Breakaway and oxygen starvation were calculated in Q10, but later than observed.
- A mild temperature excursion was observed during the Q10 experiment.
 - Only the calculation with breakaway enable for both steam and air calculated the excursion.
- Breakaway was expected during Q16 and it was calculated when breakaway was enabled.
 - However there was no indication from online measurement that it occurred,
 - and this was supported by the simulation where breakaway was disabled
 - Possible that the low oxygen concentration may have influenced the kinetics and masked the effect of breakaway.
 - Evidence that this may be significant.
- The large excursion observed during reflood in the Q16 experiment was not reproduced.
 - A previously damaged oxide layer,
 - nitride reaction and α -Zr(O) formation
 - or a combination of all may be the cause of the excursion.
 - These are identified as areas where model improvement is necessary

Thank you for your attention

PSI, 30. April 2014

SET's from KIT presented during the QWS 17th

The oxidation kinetics depends on oxygen concentration.

 \succ Time-averaged oxidation was extracted from the results and plotted as a function of mean bundle concentration.

>A curve of dependence was deduced that intended to capture the effect well enough to go into a model.

➢Note that this is purely a fit to a limited set data, used to explore the effect. It is not a proposed model

Analysis of Q-16 with SCDAPSim 3.5 with trial correlation

•Red: PSI air oxidation model with/without breakawy

- Blue: including also the correlation for [O2] concentration
- •The calculation with breakaway and [O2] concentration are closest to experiment
- •If bkwy had occured in the experiment would not have been obvious.