
I. Drobyshevskaya
N. Mosunova
A. Gorobets

I. Drobyshevskaya
N. Mosunova
A. Gorobets

MELCOR Code Performance
Improvement

MELCOR Code Performance
Improvement

РОССИЙСКАЯ АКАДЕМИЯ НАУК
Институт проблем безопасного развития атомной энергетики

РОССИЙСКАЯ АКАДЕМИЯ НАУК
Институт проблем безопасного развития атомной энергетики

RUSSIAN ACADEMY OF SCIENCES
Nuclear Safety Institute (IBRAE)

RUSSIAN ACADEMY OF SCIENCES
Nuclear Safety Institute (IBRAE)

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology,

AlbaNova, Stockholm, Sweden

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

OutlineOutline

� MELCOR code performance improvement
strategies

� Variables swapping
� Parallelization

� Package by package parallelization
� MELCOR CVH/FL package parallelization results
� MELCOR RN1 package parallelization results
� MELCOR COR package parallelization
� Performance and physical testing

2

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

MELCOR Code Performance Improvement
Strategies

MELCOR Code Performance Improvement
Strategies

� Parallelization
� Optimization
� Variables swapping instead of copying
� Numerical solvers modernization

3

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Percent of the Total CPU Time Spent on Old -
New Data Copying Subroutines

Percent of the Total CPU Time Spent on Old -
New Data Copying Subroutines

Name Ncycle

Copying(2795), % of the total
CPU time

debug release

TestLnew 10000 4.22682 3.46118

PWR 10000 4.07423 3.20576

BWR 10000 4.16238 2.64994

ISP37 84000 1.59107 1.20770

Accum 48000 4.69685 3.74983

4

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Old-New Variables Copying AlgorithmOld-New Variables Copying Algorithm

5

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Old-New Variables Swapping AlgorithmOld-New Variables Swapping Algorithm

6

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Testing ResultsTesting Results

Name Ncycle

Copying Swapping
release release

Time, s % of CPU Time, s % of
CPU

TestLnew 10000 6.02339 3.46118 5.63890 2.67194

PWR 10000 5.69175 3.20576 5.10419 2.50900

BWR 10000 5.73897 2.64994 5.06017 2.23071

ISP37 84000 8.52898 1.20770 4.52262 0.68059

Accum 48000 173.04676 3.74983 132.36028 2.49887

7

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Testing Results (2)Testing Results (2)

Name Ncycle

Copying (2795) Swapping (4600)

release release
Time, s % Time, s %

GrandGulf_STS
BO

36000 95.96534 2.0154 80.96818 1.9941

Zion_SBO 108000 286.7392 2.3668 257.9185 2.4085

TMI 274000 330.8196 1.4221 292.4056 1.3061

Surry_LBLOCA
_MACCS

125000 432.7987 3.7648 308.4119 2.5111

8

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Variables Swapping Final Remarks Variables Swapping Final Remarks

� The old-new variables swapping algorithm has
been realized for all of the MELCOR packages.

� The code modifications have been tested on the
full set of shorter and longer runs.

� The CPU time decreasing for new swapping
algorithm in comparison with old data copying
algorithm for all input decks both in debug and
release configurations.

� The bigger total CPU time is, the more efficient
data swapping algorithm is.

9

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Possible Strategies of Code ParallelizationPossible Strategies of Code Parallelization

� MPI, geometric parallelism
Clusters, distributed memory model

� OpenMP, multithreading
SMP systems, shared memory model

� Hybrid MPI + OpenMP
Clusters with multi-core SMP nodes

10

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

MPI versus OpenMPMPI versus OpenMP

The Message Passing Interface (MPI) vs. Open
Multiprocessing (OpenMP)

� MPI requires additional communication routines, additional
data structures, partitioning hence it is more complex to
implement.

� Partial parallelization in MPI requires additional scattering
and gathering routines while with OpenMP we can spread
threads wherever we want.

� MPI needs data transmission while OpenMP does not.

11

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Parallelization Approaches in Case of MELCORParallelization Approaches in Case of MELCOR

Disadvantages of MPI when applied to MELCOR

� Scalability is not needed – there is no big problems to solve.
Computing load is due to big amount of time steps

� There is OpenMP to run on SMP systems which is much
easier to use

� Scalability – it is good to solve large problems on large
computer systems

� Work on SMP systems as well as on distributed memory
clusters

Advantages of MPI

12

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

SCs for Package by Package Parallelization SCs for Package by Package Parallelization

� The new sensitivity coefficients have been added
to the MELCOR code to enable parallelization by
packages.

� The SCs allow to switch on/off the parallelization
of CVH or RN1 packages or set different number
of threads for them.

� The priority of the SC is higher than the command
line parameter NT.

13

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

CVH: Sensitivity Coefficient SC4420CVH: Sensitivity Coefficient SC4420

4420 – Criteria for activation and deactivation of CVH
package OpenMP parallelization

These coefficient is used to specify the number of threads
used for CVH package calculations.

(1) - The number of threads.
0, The default number of

threads for CVH package: one thread or the number given
by command line argument NT.

1, The CVH/FL package run
in parallel mode on one thread.

n, Sets the number of
threads for CVH package equal to n, where n is the
number from 2 to Parallel_MaxThreads

(default = 0.0, units = dimensionless)

14

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

RN: Sensitivity Coefficient SC 7004RN: Sensitivity Coefficient SC 7004

7004 – Criteria for activation and deactivation of RN1
package OpenMP parallelization

These coefficients are used to specify the number of threads
used for RN1 package calculations.

(1) - The number of threads.
0, The default number of

threads for RN1 package: one thread or the number given
by command line argument NT.

1, The RN1 package run in
parallel mode on one thread

n, Sets the number of
threads for RN1 package equal to n, where n is the
number from 2 to Parallel_MaxThreads

(default = 0.0, units = dimensionless)

15

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Example of SCs UsageExample of SCs Usage

!* Block: CVH melcor data

CVH_INPUT
CVH_SC 1 !SCnumber Value Index

1 4420 1.0 1

!* END CVH

!* Block: RN1 melcor data

RN1_INPUT
RN1_SC 1 !SCnumber Value Index

1 7004 4.0 1

!* END RN1

16

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Changes in the Output FileChanges in the Output File

MODIFIED SENSITIVITY COEFFICIENT ARRAY SC4420 (CVH
Package Parallelization)

ELEMENT(1): Number of Threads
OLD VALUE = 0.000000E+00 NEW VALUE =

1.000000E+00

MODIFIED SENSITIVITY COEFFICIENT ARRAY SC7004 (RN1
Package Parallelization)

ELEMENT(1): Number of threads
OLD VALUE = 0.000000E+00 NEW VALUE =

4.000000E+00

These output messages are written in the output and
diagnostic files.

17

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Limitations of parallel usageLimitations of parallel usage

� Currently the maximum number of parallel
threads is set to 8

� Attempt to set more then 8 threads will lead to the
error message and stop the execution

Diagnostics during MELCOR input processing CVH package:
!(
Parallel_Set_CVH_Nthreads: Number of Threads 9
exceeds Parallel_MaxThreads= 8
!)

18

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

MELCOR TimingMELCOR Timing

� The special timing module has been
implemented into the MELCOR code.

� Three packages concentrate most of the
time consumption of the code:

� The Control Volume Hydrodynamics – Flow
Path package (CVH/FL)

� RadioNuclide Package (RN)

� Core Package (COR)

19

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

RN1 Package Timing on NPP InputsRN1 Package Timing on NPP Inputs

� Jelly
CVH input/FL input –123 control
volumes and 254 flow paths.
HS input – 143 heat structures.
COR input – 17 axial levels and 6
radial rings.
RN input – 18 RN classes.

� ZionLBLOCA
CVH input/FL input –123 control
volumes and 211 flow paths.
HS input – 220 heat structures.
COR input – 19 axial levels and 6
radial rings.
RN input – 16 RN classes.

� Surry_LBLOCA_MACCS
CVH input/FL input –142 control
volumes and 263 flow paths.
HS input – 324 heat structures.
COR input – 17 axial levels and 6
radial rings.
RN input – 19 RN classes.

� FPT1
CVH input/FL input – 31 control
volumes and 29 flow paths.
HS input – 68 heat structures.
COR input – 31 axial levels and 2
radial rings.
RN input – 16 RN classes.

20

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Distribution of Computational Load for
ZionLBLOCA Test Case

Distribution of Computational Load for
ZionLBLOCA Test Case

21

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

RN1 Package Performance TestingRN1 Package Performance Testing
Efficiency

Speedup: S = t1/tP
Efficiency: E = S/P * 100%
t1 – computational time in sequential mode
tp – computational time on P cores

FP1
(31 CVs)

Jelly
(123 CVs)

ZionLBLOCA
(123CVs)

Surry
(142 CVs)

Eff, % Speed
Up Eff, % Speed

up Eff, % Speed
up Eff, % Speed

up

VAP_COND 45.7 1.8 51.5 2.0 57.7 2.3 65.4 2.6

IMPACTION 32.6 1.3 39.3 1.6 57.7 2.3 61.6 2.5

Rn1hyg 35.3 1.4 73.9 3.0 60.9 2.4 50.6 2

RN1_AER_DYN 59.7 2.4 79.7 3.2 88.1 3.5 85.2 3.4

Efficiency of parallelization and speedup on 4 threads in
release configuration

22

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

RN1 Package Parallelization ConclusionsRN1 Package Parallelization Conclusions

• The most time consuming subroutines of the RN1
package has been parallelized using OpenMP,
which lead to a speed up about 1.1 – 1.4 times on
the four cores in release configuration

� The efficiency of parallelization depends on the
number of CVs in the test case running.

� The efficiency of parallelization in release
configuration is about 70% or higher for test cases
with more than 100 CVs

23

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

CVH/FL Package Parallelization ResultsCVH/FL Package Parallelization Results

Test case
Release

1 Thread,
sec

Release
2 Threads

sec

TMI 9056.5736 8802.6656

GrandGulf_STSBO 2906.8241 2897.8925

GrandGulf_LBLOCA 694.5123 693.67263

ATMI 17727.747 17253.602

Zion_sbo 2988.1562 2990.3781

ZionLBLOCA 10847.344 34763.69

The performance results running on two threads
presented below.

24

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

CVH/FL Package Parallelization ConclusionsCVH/FL Package Parallelization Conclusions

� The speedup of the whole code in debug
configuration is about 1.5 – 2 times

� As most time consumption is concentrated in not
parallelized linear solver the speedup of the whole
code is negligible in release configuration

� Parallelization of the linear solver is unreasonable
since the dimension of the matrix of the system of
linear equations is to small to be efficiently
parallelized

� To speedup the solver it was replaced.
Performance testing of the new solver shown the
speedup about 3 – 4 times

25

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

COR Package TimingCOR Package Timing

� Timing on the same set of NPP tests as RN1
package

� Several subroutines concentrated more than
1% of total CPU time:
� COR_CORRN1

� COR_CORRN3

� COR_CORRN4

26

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

COR Package ParallelizationCOR Package Parallelization

Subroutine CPU Time, % Subroutine CPU Time, %

COR: COR_CORRN1 1 0.01751 COR: CORTKE 0.00129

COR: COR_CORRN1 2 0.04961 COR: COR_CORCND 0.08271

COR: COR_CORDHC 0.8514 COR: COR_DO120 0.68517

COR: COR_CORSRC 0.02014 COR: COR_DO400 0.0027

COR: COR_CORPOW 0.00222 COR: COR_CORSTF 0.00632

COR: COR_CORCTK 0.04237 COR: COR_CORfzs 0.00107

COR: COR_CORGAP 0.00163 COR: COR_CORLHR 0.00037

COR: COR_CORRDS 0.04725 COR: COR_CORLHD 0.32962

COR: COR_CORM 0.05741 COR: COR_COROXX ,OXY 2.93385

COR: COR_CORRAD 0.20165 COR: COR_CORGEO 0.13195

COR: cor_corsub 0.01084 COR: COR_DO260 0.24714

COR: COR_CORMPS 0.0127 COR: COR_CORBAL 0.22954

COR: COR_CORTSV 0.40246 Sum: 6.36892

27

Distribution of computational load in COR_CORRN1
subroutine

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

COR Package Parallelization ConclusionsCOR Package Parallelization Conclusions

� The study of distribution of computational load of
the COR package has shown only several
sources which take at least 1 – 3 percent of total
CPU time

� Most of the time consumption is concentrated in
plenty of small sources 0.5 – 0.01 percent of
total CPU each

� The detailed study of most loaded places shown
the interdependencies preventing from correct
parallelization

28

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Performance ResultsPerformance Results

FPT1 Jelly
Zion

LBLOCA
Surry Vanam

Total
Speedup

1.12 1.43 1.61 1.59 1.63

� RN1 and CVH/FL in parallel mode
� 4 parallel threads
� Release configuration

29

SURRY_LBLOCA_MACCS test case FPT1 test case

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Comparison of Physical ResultsComparison of Physical Results

� All changes in the code have been tested on the
big set of tests including the chosen NPP tests in
debug and release configurations

� The results are identical running in sequential
mode

� In parallel mode the results are either identical or
have negligible differences in both debug and
release configurations

30

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

Comparison of Physical Results (2)Comparison of Physical Results (2)

31

Total non-radioactive plus radioactive mass released from COR components for
SURRY_LBLOCA_MACCS

Temperature of the cladding for Jelly test case
Temperature of the cladding for

SURRY_LBLOCA_MACCS test case

EMUG Meeting, May 3, 2013
KTH Royal Institute of Technology, AlbaNova, Stockholm, Sweden

ConclusionsConclusions

� Several ways of MELCOR code performance
improvement have been developed

� The parallelization of two time consumption
modules has been accomplished

� The swapping algorithm has been realized
instead of copying the old/new data for most of
the MELCOR packages. The total CPU time
decrease for all the input decks tested

