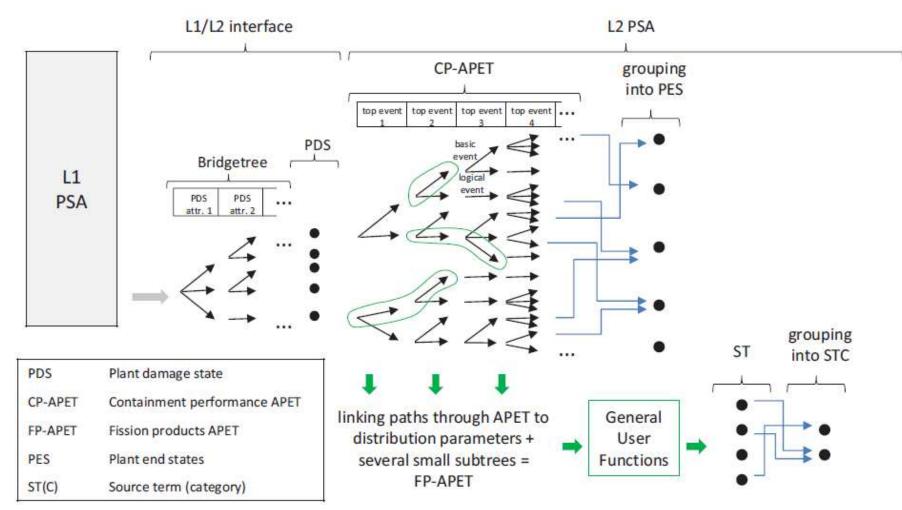
Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants

4th European MELCOR User Group – 16th to 17th of April, 2012 – Cologne, Germany

C. NGATCHOU

CHOOSE EXPERTS, FIND PARTNERS

- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
- Conclusion

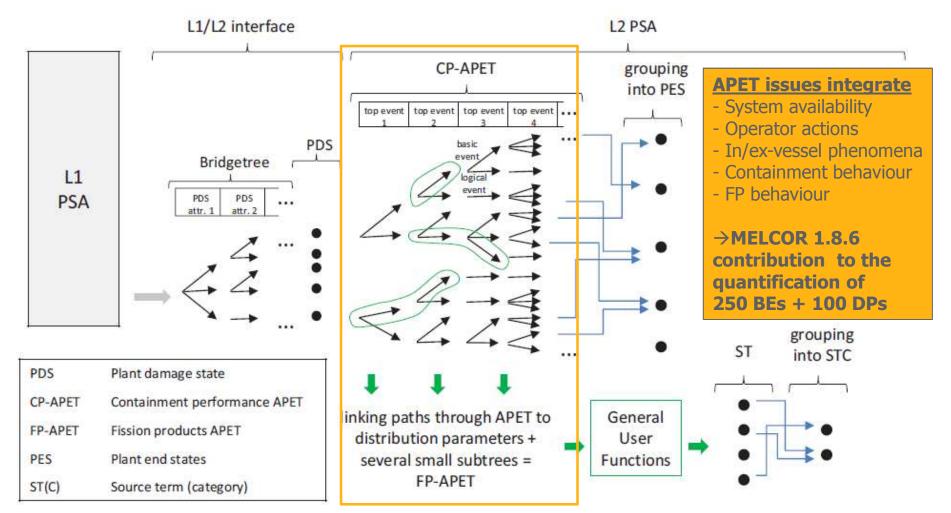

- Introduction
 - Level 2 Probabilistic Safety Assessment of Belgian plants (background)
 - Level 2 Probabilistic Safety Assessment (L2PSA) Overview
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
- Conclusion

LEVEL 2 PSA OF BELGIAN PLANTS (BACKGROUND)

- Previous L2PSA of Belgian units took place in the mid-1990's
 - Objective was to evaluate the Containment Performance (CP) considering some SAMG actions
 - Different Containment Event Tree developed for 2 units (~110 basic events quantified per unit)
 - Severe Accident code: MELCOR 1.8.1 & 1.8.2
- Objectives of the update L2PSA of Belgian units which started in the mid-2000's
 - Evaluate the CP considering <u>all</u> SAMG actions and Emergency Operating Procedures (FR-C.1)
 - Evaluate the Fission Product (FP) Source Term (ST)
 - Integrate Human Reliability Analysis (HRA) over Operator Actions (OAs)
 - Evaluate shutdown Plant Operating States
- Update L2PSA of Belgian units
 - Generic Accident Progression Event Tree (APET) developed for <u>all</u> units
 - 250 basic events and 100 FP Distribution Parameters (DPs)
 - Severe Accident code: MELCOR 1.8.5 & 1.8.6
 - Probabilistic code for APET evaluation: EVNTRE

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012 5

LEVEL 2 PSA OVERVIEW

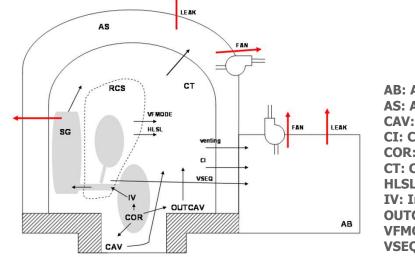

TRACTEBEL Engineering

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012

LEVEL 2 PSA OVERVIEW

TRACTEBEL Engineering

GDF JVez



- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
- Conclusion

MELCOR CALCULATION SELECTION PROCESS

- MELCOR calculations aim at providing support to the expert performing the quantification:
 - MELCOR calculations can not match all APET branches
 - MELCOR calculations aim at supporting the quantification of the APET phenomenological issues
 - Other sources for the quantification are available
- MELCOR calculation matrix:
 - Is based on engineering judgment over PDS attributes definition, literature information, and REX
 - Should acknowledge the presence of several FP release flow paths

AB: Auxiliary Building AS: Annular Space CAV: Reactor Cavity CI: Containment Isolation COR: Core / Corium CT: Containment HLSL: Hot Leg / Surge Line creep failure IV: In-Vessel OUTCAV: Outside reactor Cavity VFMODE: Vessel Failure Mode VSEQ: V-sequence (ISLOCA)

MELCOR CALCULATION SELECTION PROCESS

- Step 1: selection of representative calculations (MELCOR full-scope)
 - Definition of BC calculations starting from the initiating events as defined in the PDS attributes
 - Considering OAs in Emergency Operating Procedures (FR-C.1): RCS depressurization via the PPORVs or via the SG PORVs
 - Considering the SAMGs: OAs included in the SA management guidance
 - No need to implement all the possible combinations of the safety features
- Step 2: consideration of specific phenomenological issues (MELCOR stand-alone)
 - Flashing of the Reactor Coolant System (RCS) content at Vessel Failure (VF)
 - Ex-vessel Fuel Coolant Interaction (FCI)
 - Containment isolation failure
 - Distribution of FP along multiple flow paths
- Step 3: identification of additional calculations during the quantification process
 - Additional request once the quantification process is launched (sensitivity calculation)
- Step 4: consideration of shutdown states

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012

ID	Creep F	ailure	PPORVs	SG PORVs	AFW	ECCS	CHR	AS VE	AS VI
	No		No	No	No	No	No	No	No
SBO	HLSL		No	No	No	No	No	No	No
000	No		No	Total recov. early					
	No		No	No	AF avail.	Early recov.	Early recov.	No	Avail.
	No			No	No	No	No	No	No
	No		Very early 3/3	No	No	LPSI avail. (inj. only) or early HPSI		Avail.	Avail.
	No		,	No	No		No	No	No
LossFW	HLSL		No	No	No	No	Early recov.	No	Avail.
	SGTR (2						<u> </u>	Avail.	No
	SGTR (1	Base	Case calcul	ations (no OA	As and no	safety systems recovery)		No	No
	No	- Very	Early refers	s to time phase	e between	core damage and SAMGs op	ening	No	No
	No	- Early	refers to ti	me phase betw	veen SAM	Gs opening and VF	_	No	No
	No	-		e phase after \		J		No	Avail.
VSLOCA	No	Luco						Avail.	No
	No		_					No	No
	No	All Ba	ase Case ca	alculations ca	n be usef	ul to assess:		No	No
	No	- In-ve	essel melt p	progression				No	No
	No		e time to VF					Avail.	Avail.
	No			se time within	the SAMO	e e		No	Avail.
SLOCA	No		ainment cha		the SAPIC	19		Avail.	No
	No			allenges				Avail.	Avail.
	No	- FP De	ehaviour					Avail.	No
	No		Very early 1/3			No	No	No	No
	No			No	No	No	No	No	No
	No			No	No	Early LPSI (inj. only)	No	Avail.	Avail.
	No	NoNoVery early LPSI (inj. only)1 SP avail.					Avail.	Avail.	
	No			No	No	No	No	No	No
SGTR	No		,	No	No	No	No	No	No
	No No			•	Early recov.		No	No	Avail.
	No		Early 1/3	Early	Early recov.		No	Avail.	No
ISLOCA	No		No	Avail.	AF avail.	HPSI avail.	Avail.	Avail.	Avail.

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012

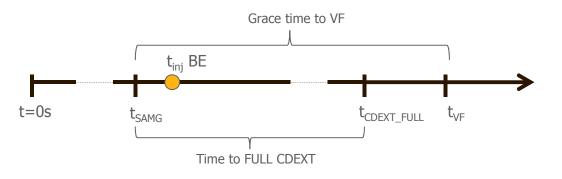
ID	Creep Failure	PPORVs	SG PORVs	AFW	ECCS	CHR	AS VE	AS VI
	No	No	No	No	No	No	No	No
SBO	HLSL	No	No	No	No	No	No	No
000	No	No	Total recov. early					
	No	No	No	AF avail.	Early recov.	Early recov.		Avail.
	No	No	No	No	No	No	No	No
	No	Very early 3/3		No	LPSI avail. (inj. only) or early HPSI		Avail.	Avail.
	No	Early 3/3	No	No	LPSI avail. (inj. only) or early HPSI	No	No	No
LossFW	HLSL	No	No	No	No	Early recov.	No	Avail.
	SGTR (2 tubes)	No	No	No	LPS Assessment of the im	nact of n	rimar	
	```	No	No	No				<b>′</b>
	No	No	No	No	LPS or secondary depress	surization	on th	e
	No	No	No	No	No accident progression			
	No	No	No	AF avail.				ail.
VSLOCA	No	No	Very early	AF avail.	Early HPSI (inj. only)	No	Avail.	No
	No	No	Early	AF avail.	No	1 SP avail.	No	No
	No	Early 1/3	No	No	No	No	No	No
	No	No	No	No	No	No	No	No
	No	No	Very early	AF avail.	Early recov. (inj. only)	1 SP avail.	Avail.	Avail.
	No	No	Early	AF avail.	Early LPSI (inj. only)	1 SP avail.	No	Avail.
SLOCA	No	Early 3/3	No	No	Early recov. (inj. only)	1 SP avail.	Avail.	No
	No	Very early 3/3		No	Very early recov. (inj. only)	No	Avail.	Avail.
	No	Early 1/3	No	No	Late LPSI	No	Avail.	No
	No	Very early 1/3	No	No	No	No	No	No
	No	No	No	No	No	No	No	No
LLOCA	No	No	No	No	Early LPSI (inj. only)	No	Avail.	Avail.
	No	No	No	No	Very early LPSI (inj. only)	1 SP avail.	Avail.	Avail.
	No	No	No	No	No	No	No	No
SGTR	No	Early 3/3	No	No	No	No	No	No
	No		Early		No	No	No	Avail.
	No	Early 1/3	Early	Early recov.		No	Avail.	No
ISLOCA	No	No	Avail.	AF avail.	HPSI avail.	Avail.	Avail.	Avail.

TRACTERE	L Engineering
	COE SLIPZ

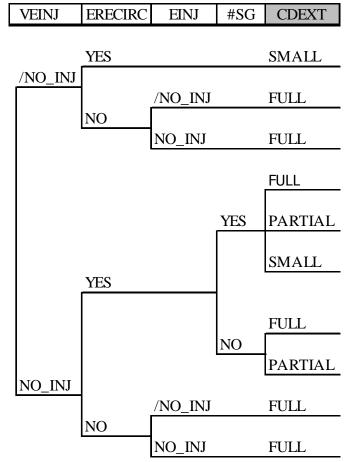
ALC: NOT THE OWNER.

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012 12

ID	Creep Failure	PPORVs	SG PORVs	AFW	ECCS	CHR	AS VE	AS VI
	No	No	No	No	No	No	No	No
SBO	HLSL	No	No	No	No	No	No	No
560	No	No	Total recov. early					
	No	No	No	AF avail.	Early recov.	Early recov.	No	Avail.
	No	No	No	No	No	No	No	No
	No	Very early 3/3	No	No	LPSI avail. (inj. only) or early HPSI	1 SP avail.	Avail.	Avail.
	No		No	No	LPSI avail. (inj. only) or early HPSI		No	No
LossFW	HLSL	No	No		No	Early recov.	No	Avail.
			No	No	LPSI avail. (inj. only)		Avail.	No
ssFW_1			No	No	LPSI avail. (inj. only)		No	No
<b>ORVs eff</b>	iciency + Impa		No	No	LPSI avail.	1 SP avail.	No	No
	on on core deg		No	No	No	No	No	No
<b>,</b>	j		No	AF avail.	No	No	No	Avail.
			Very early		Early HPSI (inj. only)	VSLOCA		
ssFW_2			Early		No			dont
unding se	cenario to asse	ess H2 risk	No	No	No	Very slow		
	1.12		No	No	No	progress		
	No	No	Very early		Early recov. (inj. only)	depressu		on + e
	No	No	Early	AF avail.	Early LPSI (inj. only)	RCS inje	ction	
SLOCA	No	· · · · ·	No	No	Early recov. (inj. only)			
	No	Very early 3/3		No	Very early recov. (inj. only)		1	
	No	,	No	•	Late LPSI	SLOCA_		
	No	Very early 1/3		No	No	Boundin		
	No	No	No	No	No	assess ir	<b>1-vess</b>	el H2
LLOCA	No	No	No	No	Early LPSI (inj. only)	producti	on	
	No	No	No	No	Very early LPSI (inj. only)			
	No	No	No	No	No		2	
SGTR	No		No	No	No	SLOCA_		
	No	No	Early	Early recov.		Late con	tainm	ent
	No	Early 1/3	Early	Early recov.		overpres	suriza	tion
ISLOCA	No	No	Avail.	AF avail.	HPSI avail.		/ (Volii.	/ / / 0.11.


Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012

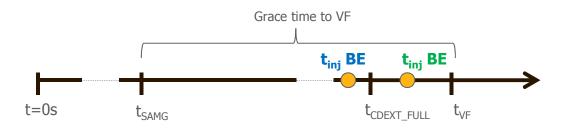
ID	Creep Failure	PPORVs	SG PORVs	AFW	ECCS	CHR	AS VE	AS VI
	-	-	No	No	No	No	No	No
SBO	HLSL	No	No	No	No	No	No	No
000	No	No	Total recov. early					
	No	No	No	AF avail.	Early recov.	Early recov.	No	Avail.
	No	No	No	No	No		No	No
	No	Very early 3/3	No	No	LPSI avail. (inj. only) or early HPSI	1 SP avail.	Avail.	Avail.
	No	Early 3/3	No	No	LPSI avail. (inj. only) or early HPSI	No	No	No
LossFW	HLSL	No	No	No	No	Early recov.	No	Avail.
	SGTR (2 tubes)	No	No	No	LPSI avail. (inj. only)	1 SP avail.	Avail.	No
	SGTR (10 tubes)	No	No	No	LPSI avail. (inj. only)	1 SP avail.	No	No
	No	No	No	No	LPSI avail.	1 SP avail.	No	No
	No	No	No	No	No	No	No	No
	No	No	No	AF avail.	No	No	No	Avail.
VSLOCA	No	No	Very early	AF avail.	Early HPSI (inj. only)	No	Avail.	No
	No	<b>A</b>				1 SP avail.	No	No
	No	Assessme	nt of almeren	t release	paths for fission product	No	No	No
		No	No	No	No	No	No	No
	No	No	Very early	AF avail.	Early recov. (inj. only)		Avail.	Avail.
	No	No	Early	AF avail.	Early LPSI (inj. only)		No	Avail.
SLOCA	No	Early 3/3	No	No	Early recov. (inj. only)	1 SP avail.	Avail.	No
	No	Very early 3/3	No	No	Very early recov. (inj. only)	No	Avail.	Avail.
	No	Early 1/3	No	No	Late LPSI	No	Avail.	No
	No	Very early 1/3	No	No	No	No	No	No
	No	No	No	No	No	No	No	No
LLOCA	No	No	No	No	Early LPSI (inj. only)	No	Avail.	Avail.
	No	No	No	No	Very early LPSI (inj. only)	1 SP avail.	Avail.	Avail.
	No	No	No	No	No	No	No	No
SGTR	No	Early 3/3	No	No	No	No	No	No
JUR	No	No	Early	Early recov.	No	No	No	Avail.
	No	Early 1/3	Early	Early recov.	No	No	Avail.	No
ISLOCA	No	No	Avail.	AF avail.	HPSI avail.	Avail.	Avail.	Avail.


- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
  - Core Damage Extent
  - Core Debris Ejection at Vessel Failure
  - Containment Failure due to Pressure Rise at Vessel Failure
  - Human Reliability Analysis (HRA)
  - Fission Product Release from Core / Corium
- Conclusion

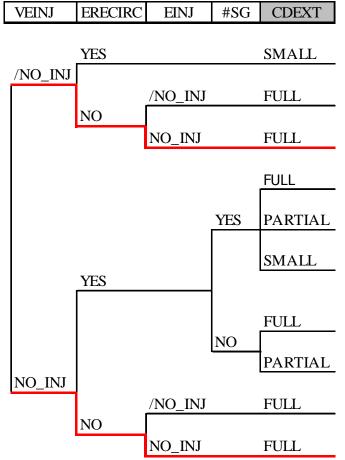
## **CORE DAMAGE EXTENT**

- SMALL: CDEXT < 5% total core mass
- PARTIAL: 5% < CDEXT < 35% total core mass
- FULL: CDEXT > 35% total core mass




- Quantification approach
  - BC calculation gives the time frame in which water injection might be efficient to avoid full CDEXT
  - Likelihood of core degradation mitigation is determined by comparing this time frame to b.e. injection timing
  - b.e. injection: at least 20' after SAMGs opening




(V)EINJ: (Very) Early RCS injection ERECIRC: Early cooled RCS recirculation #SG: Status of SGs at core damage

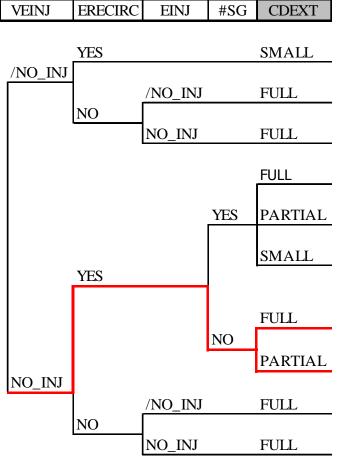
## **CORE DAMAGE EXTENT**

- SMALL: CDEXT < 5% total core mass
- PARTIAL: 5% < CDEXT < 35% total core mass
- FULL: CDEXT > 35% total core mass



ID	AFW	<b>E (s)</b>	t_inj_SI (s)	t_CDEXT_Partial (s)	t_CDEXT_Full (s)
ID 1 BC	No	20000	—	20500	20600
ID 1 P1	Yes	47100	—	169600	169800
ID_2_BC	No	2600	_	10500	17400
ID_2_P1	Yes	2600	3800	4200	10700
ID_2_P2	Yes	2600	—	8500	10000
ID_2_P3	No	2600	4100	5000	_



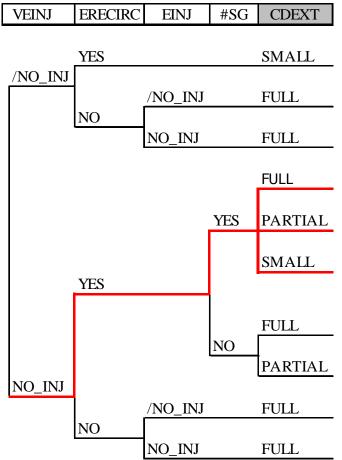

(V)EINJ: (Very) Early RCS injection ERECIRC: Early cooled RCS recirculation #SG: Status of SGs at core damage

## **CORE DAMAGE EXTENT**

- SMALL: CDEXT < 5% total core mass
- PARTIAL: 5% < CDEXT < 35% total core mass
- FULL: CDEXT > 35% total core mass



ID	<b>AFW</b>	<b>E (s)</b>	t_inj_SI (s)	t_CDEXT_Partial (s)	t_CDEXT_Full (s)
ID_1_BC	No	20000	-	20500	20600
ID 1 P1	Yes	47100	_	169600	169800
ID_2_BC	No	2600	—	10500	17400
ID_2_P1	Yes	2600	3800	4200	10700
ID_2_P2	Yes	2600	—	8500	10000
ID 2 P3	No	2600	4100	5000	_




(V)EINJ: (Very) Early RCS injection ERECIRC: Early cooled RCS recirculation #SG: Status of SGs at core damage

## **CORE DAMAGE EXTENT**

- SMALL: CDEXT < 5% total core mass - PARTIAL: 5% < CDEXT < 35% total core mass - FULL: CDEXT > 35% total core mass  $t_{inj} BE$   $t_{inj} BE$  t

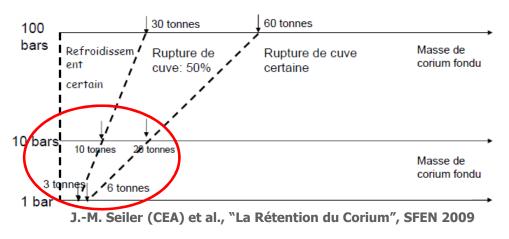
ID	AFW	<b>E (s)</b>	t_inj_SI (s)	t_CDEXT_Partial (s)	t_CDEXT_Full (s)
ID 1 BC	No	20000	_	20500	20600
ID_1_P1	Yes	47100	_	169600	169800
ID 2 BC	No	2600	—	10500	17400
ID_2_P1	Yes	2600	3800	4200	10700
ID_2_P2	Yes	2600	—	8500	10000
ID_2_P3	No	2600	4100	5000	_



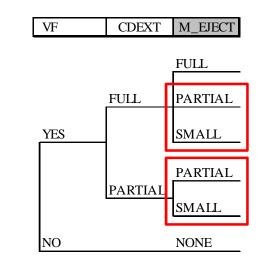
(V)EINJ: (Very) Early RCS injection ERECIRC: Early cooled RCS recirculation #SG: Status of SGs at core damage

- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
  - Core Damage Extent
  - Core Debris Ejection at Vessel Failure
  - Containment Failure due to Pressure Rise at Vessel Failure
  - Human Reliability Analysis (HRA)
  - Fission Product Release from Core / Corium
- Conclusion

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012 20


## **CORE DEBRIS EJECTION AT VESSEL FAILURE**

- M_EJECT FULL /PARTIAL /SMALL


**TRACTEBEL** Engineering

GDF Svez

- 100% /60% /30% of total core mass ejected at VF
- Supporting calculations + Engineering Judgment
  - Every MELCOR calculation with VF is used
  - Every calculation with PARTIAL CDEXT and no VF (successful core reflooding after RCS injection)

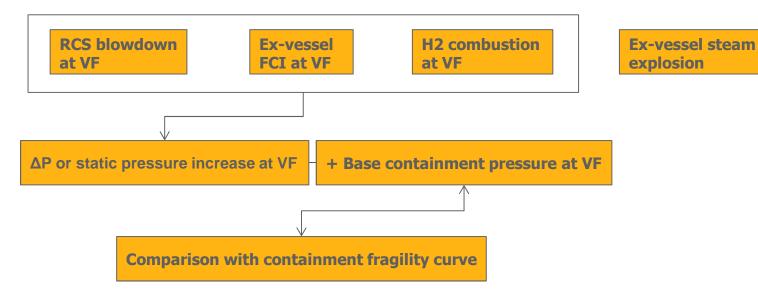


Refroidissement certain: In-vessel retention Rupture de cuve: Vessel failure Masse de corium fondu: Molten corium mass



- Assignment of probabilities
  - All debris relocated in LP is ejected at VF
  - Low confidence level on tools to assess debris ejection at VF
  - Very unlikely that total core mass be ejected at VF
  - If PARTIAL CDEXT  $\rightarrow$  debris mass in LP is lower

- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
  - Core Damage Extent
  - Core Debris Ejection at Vessel Failure
  - Containment Failure due to Pressure Rise at Vessel Failure
  - Human Reliability Analysis (HRA)
  - Fission Product Release from Core / Corium
- Conclusion


Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012 22

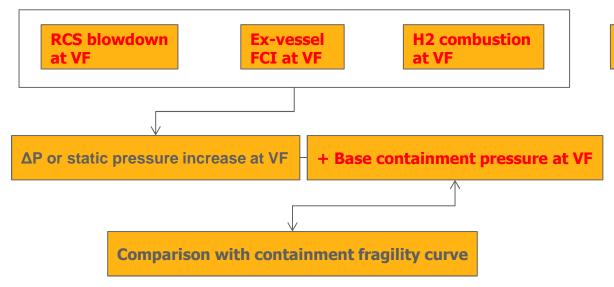
DCH

**RPV thrust** 

forces at VF

### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF**




**TRACTEBEL** Engineering

GDF SVez

- Assign split fraction to basic events linked to containment failure due to static pressure rise at VF
- Do not include loads induced by DCH, dynamic pressure wave of a steam explosion, or vessel rocketing which happen at a shorter time scale

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012 23

### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF**



**TRACTEBEL** Engineering

GDF JVez

- Assign split fraction to basic events linked to containment failure due to static pressure rise at VF
- Do not include loads induced by DCH, dynamic pressure wave of a steam explosion, or vessel rocketing which happen at a shorter time scale

Ex-vessel steam DCH explosion

RPV thrust forces at VF

- H2 risk assessment
  - Based on conditions prevailing in containment just before VF
  - Expert Judgement process + H2 risk analyser routine
  - H2 Recombiners are installed in all Belgian units
  - → No H2 risk at VF; gas mixture in containment not flammable in all control volumes
- Uncertainties treated with Crystal Ball
  - Applying distribution probabilities on results

#### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF** > Steam spike due to blowdown of the RCS content at VF

- In case of early water in reactor cavity  $\rightarrow$  difficult to isolate  $\Delta P$  induced by RCS blowdown at VF
- $\rightarrow$  Stand-alone calculations performed with a simplified input deck
- Characteristics of steam flow at VF given by MELCOR calculations
- Stand-alone calculations performed for both small and large VF

v	FMODE	Breach (m²)	EPRCS	P _{RCS at VF} (bar)	ID	Pressure rise period Δt (s)	Δp (bar)
		0.037	HIGH	160	ID_1	47	-
	SMALL	0.031		160	ID_2	43	-
		0.024	MEDIUM	76	ID_3	70	-
		0.044		69	ID_4	80	-
		3.14	HIGH	160	ID_1	4	-
	LARGE	3.14		160	ID_2	4	-
		3.14	MEDIUM	76	ID_3	6	-
		3.14		69	ID_4	8	-

VFMODE	EPRCS	RCS_BD
	HIGH	VFL_PH
LARGE	MEDIUM	VFL_PM
	LOW	NO
	HIGH	VFS_PH
SMALL	MEDIUM	VFS_PM
	LOW	NO
NONE		NO

VFMODE: Vessel Failure mode EPRCS: RCS pressure (end early phase)

### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF** > Steam spike due to blowdown of the RCS content at VF

- In case of early water in reactor cavity  $\rightarrow$  difficult to isolate  $\Delta P$  induced by RCS blowdown at VF
- $\rightarrow$  Stand-alone calculations performed with a simplified input deck
- Characteristics of steam flow at VF given by MELCOR calculations
- Stand-alone calculations performed for both small and large VF

VFMODE	Breach (m²)	EPRCS	P _{RCS at VF} (bar)	ID	Pressure rise period Δt (s)	Δp (bar)
	0.037	HIGH	160	ID_1	47	-
SMALL	0.031		160	ID_2	43	-
SMALL	0.024	MEDIUM	76	ID_3	70	-
	0.044		69	ID 4	80	-
	3.14	HIGH	160	ID_1	4	-
LARGE	3.14	пібп	160	ID_2	4	-
LAKGE	3.14	MEDIUM	76	ID_3	6	-
	3.14		69	ID_4	8	-

	-	
VFMODE	EPRCS	RCS_BD
	HIGH	VFL_PH
LARGE	MEDIUM	VFL PM
	LOW	NO
	HIGH	VFS PH
		_
SMALL	MEDIUM	VFS_PM
	LOW	NO
NONE		NO

VFMODE: Vessel Failure mode EPRCS: RCS pressure (end early phase)

### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF** > Steam spike due to ex-vessel Fuel Coolant Interaction

- Full-scope run  $\rightarrow$  difficult to isolate  $\Delta P$  induced by quenching at VF
- Stand-alone calculations  $\rightarrow \Delta P$  induced by quenching at VF
- Approach consists in the assessment of the:
  - Corium mass participating in FCI
  - Energy released during corium quenching
  - Characteristic time of debris ejection

$$E_{Quenc\ h}(t) = \left(x_{no}^{Zr} \cdot Q_{ox}^{Zr} + x_{no}^{Fe} \cdot Q_{ox}^{Fe} + x_{frag} \cdot E_{FCI}\right) m_{FCI} \cdot f(t, T_r)$$

exFCI	m_tot (%)	T_r(s)	E_Quench (GJ)	Δp (bar)
LOW	15	3	19.6	-
LOW	30	6	39.2	-
MEDIUM	45	9	58.8	-
	60	12	78.4	-
HIGH	80	16	105	-
	100	20	131	-

EWATER	M_EJECT	M_RETAIN	exFCI
		FULL	HIGH
	FULL	PARTIAL	MEDIUM
		NONE	NONE
		FULL	MEDIUM
	PARTIAL	PARTIAL	LOW
YES	-	NONE	NONE
		FULL	LOW
	SMALL	PARTIAL	LOW
		NONE	NONE
	NONE		NONE

#### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF** > Steam spike due to ex-vessel Fuel Coolant Interaction

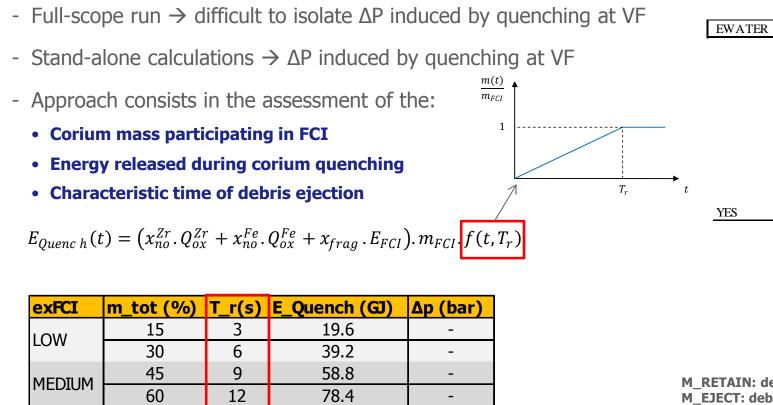
- Full-scope run  $\rightarrow$  difficult to isolate  $\Delta P$  induced by quenching at VF
- Stand-alone calculations  $\rightarrow \Delta P$  induced by quenching at VF
- Approach consists in the assessment of the:
  - Corium mass participating in FCI
  - Energy released during corium quenching
  - Characteristic time of debris ejection

$$E_{Quenc\ h}(t) = \left(x_{no}^{Zr} \cdot Q_{ox}^{Zr} + x_{no}^{Fe} \cdot Q_{ox}^{Fe} + x_{frag} \cdot E_{FCI}\right) \cdot m_{FCI} \cdot f(t, T_r)$$

exFCI	m_tot (%)	T_r(s)	E_Quench (GJ)	Δp (bar)
LOW	15	3	19.6	-
LOW	30	6	39.2	-
	45	9	58.8	-
MEDIUM	60	12	78.4	-
HIGH	80	16	105	-
	100	20	131	-

EWATER M EJECT M RETAIN exFCI FULL HIGH FULL PARTIAL MEDIUM NONE NONE FULL MEDIUM PARTIAL PARTIAL LOW YES NONE NONE LOW FULL SMALL PARTIAL LOW NONE NONE NONE NONE

80


100

HIGH

16

20

#### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF** > Steam spike due to ex-vessel Fuel Coolant Interaction



-

105

131

EWATER M EJECT M RETAIN exFCI

FULL

SMALL

NONE

FULL

NONE

FULL

NONE

FULL

NONE

PARTIAL LOW

PARTIAL PARTIAL

PARTIAL

HIGH

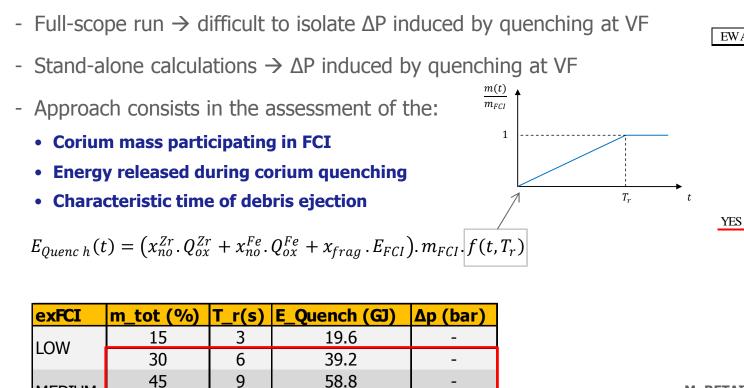
NONE

LOW

NONE

LOW

NONE


NONE

MEDIUM

MEDIUM

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants

### **CONTAINMENT FAILURE DUE TO PRESSURE RISE AT VF** > Steam spike due to ex-vessel Fuel Coolant Interaction



78.4

105

131

-

-

-

TRACTEBEL Engineering

**MEDIUM** 

HIGH

60

80

100

12

16

20

GDF SVez

EWATER M EJECT M RETAIN exFCI FULL HIGH FULL PARTIAL MEDIUM NONE NONE FULL MEDIUM PARTIAL PARTIAL LOW NONE NONE FULL LOW **SMALL** PARTIAL LOW NONE NONE NONE NONE

- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
  - Core Damage Extent
  - Core Debris Ejection at Vessel Failure
  - Containment Failure due to Pressure Rise at Vessel Failure
  - Human Reliability Analysis (HRA)
  - Fission Product Release from Core / Corium
- Conclusion

## HUMAN RELIABILITY ANALYSIS

- Assign split fraction to APET basic events linked to AM actions (or HFE = failure to perform task)
- For each BE, probabilities of failure (outcome = NO) based on MELCOR calculations is assessed
  - A mean value for the available time to perform the task is derived and
  - A probability of failure is obtained based on the HRA methodology
- HRA methodology
  - Decomposition of each task in successive subtasks
  - Quantification of the probability of failure for each subtask
  - Assessment of the dependency between HFEs; Sequence of HFEs has to be assigned
- Expert Judgement process

- \$EAM_PPORV
  - Probability of having an AM action on the opening of at least one PPORV to depressurize the RCS during the early phase

ID	T _{CET} = 650°C Open SAM		t _{vF} (s)	Δt t ₆₅₀ – t _{VF}	<mark>Δt t₀ – t_{VF}</mark>
	(s)	t ₀ (s)		(s)	(s)
ID_1_BC	7900	8800	13500	5600	4700
ID_2_BC	1700	2600	26000	24300	23400

ID	P _{RCS} at t0 (bar)	t _{PPORV} (s)	t _{accu} (s)	t _{PRCS=12bar} (s)	P _{RCS} at VF (bar)	t _{vf} (s)
ID_1_P1	160	9800	10200	10900	2	45900
ID_2_P1	30	3500	1640	3700	2	32200

Experts #	HEP no dep.	dep. Level	HEP dep.
Expert 1	0.1383	moderate	0.2614
Expert 2	0.00389	high	0.50194
Expert 3	0.00256	moderate	0.14505
<b>Aggregation</b>	0.048	-	0.303

Expert n°1: very short available time to perform actions + many negative impacts listed but applicability not clearly defined

## HUMAN RELIABILITY ANALYSIS

- Assign split fraction to APET basic events linked to AM actions (or HFE = failure to perform task)
- For each BE, probabilities of failure (outcome = NO) based on MELCOR calculations is assessed
  - A mean value for the available time to perform the task is derived and
  - A probability of failure is obtained based on the HRA methodology
- HRA methodology
  - Decomposition of each task in successive subtasks
  - Quantification of the probability of failure for each subtask
  - Assessment of the dependency between HFEs; Sequence of HFEs has to be assigned
- Expert Judgement process

- \$EAM_PPORV
  - Probability of having an AM action on the opening of at least one PPORV to depressurize the RCS during the early phase

ID	<b>T</b> _{CET} = <b>650°C</b>	Open SAMG	t _{vF} (s)	Δt t ₆₅₀ – t _{VF}	<mark>Δt t₀ – t_{VF}</mark>
	(s)	t ₀ (s)		(s)	(s)
ID_1_BC	7900	8800	13500	5600	4700
ID_2_BC	1700	2600	26000	24300	23400

ID	P _{RCS} at t0 (bar)	t _{PPORV} (s)	t _{accu} (s)	t _{PRCS=12bar} (S)	P _{RCS} at VF (bar)	t _{vf} (s)
ID_1_P1	160	9800	10200	10900	2	45900
ID_2_P1	30	3500	1640	3700	2	32200

Experts #	HEP no dep.	dep. Level	HEP dep.
Expert 1	0.1383	moderate	0.2614
Expert 2	0.00389	high	0.50194
Expert 3	pert 3 0.00256		0.14505
<b>Aggregation</b>	0.048	-	0.303

Expert n°1: very short available time to perform actions + many negative impacts listed but applicability not clearly defined

- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
  - Core Damage Extent
  - Core Debris Ejection at Vessel Failure
  - Containment Failure due to Pressure Rise at Vessel Failure
  - Human Reliability Analysis (HRA)
  - Fission Product Release from Core / Corium
- Conclusion

## **FISSION PRODUCT RELEASE FROM CORE/CORIUM**

- Assessment of FP release from the core/corium during Early, VF and Late phases
- Quantification of DPs is based on MELCOR calculations and/or literature information
- The main uncertainties are on phenomena appearing during core degradation and MCCI
- Mapping of MELCOR FP classes with NUREG-1465 FP classes
- §x_COR_R_1: value represents % of the initial core inventory of the considered FP class
- §x_COR_R_2: as CDEXT is full, sum of releases during accident progression = sum §x_COR_R_1

CDEXT	VF	E_COR_R	VF_COR_R	L_COR_R			D	istribution	<b>Parameters'</b>	Values for	each FP Cla	I <mark>S S</mark>	
	YES	§E COR R	§VF_COR_R	§L_COR_R	Distr. Parameter	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	Class 8
FULL	!	<u></u>	<u> </u>	<u> </u>	Distr. Farancer	Noble	Halogens	Alkali	Tellurium	Barium,	Noble	Lantha-	Cerium
	NO	§E COR R	0	0	/	Gases	Halogens	Metals	Group	Strontium	Metals	nides	Group
	·	• <u>-</u> -			§E_COR_R_1	- /	A	-	-	-	· · · · ·	-	-
	YES	§E_COR_R	§VF_COR_R	§L_COR_R	§VF_COR_R_1	-	В	-	-	-	- /	-	-
PARTIAL	[ !		0		§L_COR_R_1		C	-	-	-	-	-	<u> </u>
	NO	§E_COR_R	0	0	§E_COR_R_2	<u> </u>	D	- /	-	-	<u> </u>	-	<u> </u>
					§VF_COR_R_2	0%	0%	0%	0%	0%	0%	0%	0%
SMALL	NO	§E_COR_R	0	0	§L_COR_R_2	0%	0%	0%	0%	0%	0%	0%	0%

_COR_R: FP amount released from the core/corium



- Introduction
- MELCOR Supporting Calculation Matrix for APET Quantification
- How to Quantify Issues Supported by MELCOR Calculations
- Conclusion

# CONCLUSION

- Importance of MELCOR for APET quantification
  - MELCOR contributes to assess ~75% of the APET issues
- No recipe book for basic event split fractions...
  - ... But engineering judgment over available data + best practices application from SA and L2PSA network
- MELCOR Validation and Qualification before use
  - Examples of Tractebel Engineering's benchmarks: RELAP, QUENCH-06, TMI-2, PHEBUS-FPT1, PAKS, ASTEC, TRAPCON, COMET L2/L3

- The most uncertain phenomenological issues treated with MELCOR
  - Loss of heat sink due to H2 blockage
  - Hot leg / surge line creep failure and induced SGTR
  - In-vessel melt retention
  - Containment failure due to H2 burn
- General approach to limit the impact of uncertainties on the APET evaluation results
  - Detailed Generic Event Tree → Robust L2PSA methodology → Qualitative uncertainty → EJ or not EJ → Use of probabilistic tools for specific issues → APET sensitivity analysis



# THANK YOU !

TRACTEBEL Engineering

Use of MELCOR Calculations in the Frame of Level 2 Probabilistic Safety Assessment of the Belgian Plants 17/04/2012 37