European MELCOR Users Group Meeting (EMUG) 2012:

Modelling In-Vessel-Retention

Dr. W. Rapp¹, K. Knebel², Dr. M. Bauer¹ and Dr. D. Freis¹
¹ Westinghouse Electric Germany GmbH
² European Commission, Joint Research Centre, ITU
Köln, 16-17.04.2012

Overview

- Introduction
- Critical heat flux (CHF)
 - Experimental results
 - CHF correlation in MELCOR
- Model of In Vessel Retention
 - Boundary conditions
 - Criteria for RPV failture
- Results
 - Base Case (10 cm² SB-LOCA)
 - Variation SB-LOCA with lower flow rate
 - Variation SB-LOCA with increased decay heat
 - Variation 200 cm² LOCA
- Summary

Introduction

In-vessel melt retention (IVMR) concept

Principle:

- 1: oxidic melt layer,
- 2: metallic melt layer,
- 3: channel for cooling water,
- 4: reactor pit,
- 5: rising two-phase mixture,
- 6: separation of liquid phase and steam at the elevation of the primary coolant lines

Source: Westinghouse Electric Company, AP1000 European Design Control Document, Chapter 39, Pittsburgh, 2009

Critical heat flux (CHF) - Experimental results

- Determination of Critical Heat Flux (CHF) for AP600 (ULPU-III, -IV) and AP1000 (ULPU-V) geometries
- ULPU-III: simple flow duct (consists of inclined metal sheet)
- ULPU-IV: improved flow duct (constant flow channel width)
- ULPU-V: improved flow duct + optimized flow cross section
- Results: CHF in dependence of surface inclination of RPV

Critical heat flux (CHF) - CHF correlation in MELCOR (1)

Calculation of the critical heat flux in MELCOR

$$q_{CHF}(\theta) = (A + B * \theta^{C}) * \rho_{G}^{0,5} * h_{V} * [g * \sigma * (\rho_{F} - \rho_{G})]^{0,25} * \frac{kW}{m^{2}}$$

	А	В	С
Default values MELCOR	0,034	0,0037	0,656
Values (experiment ULPU V)	0,069	0,0067	0,656

<u>ULPU boundery conditions:</u>

- 5 K subcooled water
- pressure of 1.7 bar (abs.)

 Θ : surface angle (0 = horizontal)

- surface tension gas-fluid σ:
- ρ_{G}, ρ_{F} : density gas, fluid
- h_{V} : evaporation enthalpy
- gravity acceleration g:

Critical heat flux (CHF) - CHF correlation in MELCOR (2)

 Modified MELCOR correlation for CHF for the boundary conditions of the ULPU experiments

Model of In Vessel Retention (1)

The concept of the IVMR was validated using MELCOR 1.8.6 model of German PWR (~ 3700 MW)

Base Case: Condensation at containment and Adapted to simulate the it's internals **IVMR-system** Installation of a forced flow Heat exchanger (SFP cooling) Steam Backflow into Modified the sump correlation for CHF TG-Heat Exchanger Sump Sump Molten Core TG-Pump TH-Sump Valve nghouse

Model of In Vessel Retention (2)

Model of In Vessel Retention (3)

Model of In Vessel Retention (4)

For the failure of the RPV in the simulations the following criteria were used. The lower plenum fails if

- the sum of the relative thermal expansion and the plastic deformation due to creep in any layer exceeds 18 % or
- a pressure increase to 200 bar in the RPV occurs (caused by the falling of core debris into a water pool in the lower plenum) or
- when the outside of the lower plenum reaches a temperature greater than or equal to the melting temperature of the material. (This is always the case when the local CHF is exceeded).

Boundary conditions

- Base case: Small break loss of coolent accident (SB-LOCA)
 - 10 cm² leak
 - with depressurization of primary side,
 - flow rate 38.4 kg/s
 - water temperatur after heat exchanger 38 °C
 - IVMR system is activated if the core outlet temperature is 750 K
- Variations:
 - Reduced flow rate
 - Increased decay heat
 - 200 cm² LOCA
 - no depressurization of primary side
 - LB-LOCA (2A-break)

Results: Containment pressure

- 750 K criteria for activation of IMVR is reached at 6820 s
- Containment pressure < 3.2 bar
- \rightarrow No filtered containment venting is necessary

Results: Base case - Temperature on the outside and inside of the RPV

Results: Base case - Nubers of layers of the PRV wall below melt temperatur

- Minimum 7 RPV layers below melting temperature
- About 55 mm remaining wall thickness
- \rightarrow The structural integrity of the RPV is threatened at no time

Results: Base Case – experimental CHF compared to calculated maximum heat flux

- Maximum values calculated by MELCOR are always below the CHF values
- \rightarrow No RPV failure was observed by MELCOR

Results:Variation – SB-LOCA with lower flow rate

- The flow rate was reduced to 50 % of the base case (19.2 kg/s)
- \rightarrow Additional local pressure maximum value of 2.9 bar in containment
- \rightarrow No venting is necessary

Results:Variation – SB-LOCA with increased decay heat

- Increased decay heat by 8 % compared to base case.
- \rightarrow Negligible effect on the RPV wall temperature
- \rightarrow Still margin in the design

Results: Variation – 200 cm² LOCA (1)

- Pressure history in the containment
- Faster accident sequence

 \rightarrow No RPV failure is calculated and no containment venting is required

Results: Variation – 200 cm² LOCA (2)

- Number of layers of the RPV wall with a temperature below melt temperature over time, for each segmental ring
- → Minimum 6 RPV layers below melting temperature, equalling 40.55 mm

Results: Variation – 200 cm² LOCA (3)

- Comparison of calculated maximum local heat flux on the outside of the RPV to the CHF of the ULPU experiments
- \rightarrow No RPV failure is calculated

Summary

- The feasibility of retrofitting IVMR in large PWRs has been analysed based on the ULPU experiments.
- A MELCOR model of a German PWR was modified to model an IVMR based on
 - gravity driven flow from the spend fuel pool and
 - pump driven injections to the RPV cavity.
- The CHF correlations of MELCOR has been modified to reflect the results of the ULPU experiments.
- MELCOR simulations of several severe accident scenarios has been performed. In all simulations the melt could successfully be retained in the RPV.
- No venting of containment was necessary.
- Further investigations must be performed using a detailed thermo hydraulic model
- → "Take home" message: The simulations showed the usefullness and feasibility of such a retrofit.

