

Ex-vessel LOCA for the European HCPB TBM system using the pedigreed MELCOR182 for fusion

Institute of Neutron Physics and Reactor Technology (INR)

X. Jin^a, B. Merrill^b, L. V. Boccaccini^a

^a Karlsruhe Institute of Technology (KIT)
^b Idaho National Laboratory (INL)

The 4th Meeting of the "European MELCOR User Group"

Cologne, Germany

April 16-17, 2012

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

- Pedigreed MELCOR182 for fusion
- HCPB TBM and HCS
- Ex-vessel LOCA
 - Accidental sequence
 - MELCOR model for helium blow-down
 - MELCOR 3D-model for ½ BU
- MELCOR results & open issues

Pedigreed MELCOR182 for fusion

- The version is modified by INL for ITER purposes*:
 - chemical oxidation reactions of steam with Be, C and W,
 - extension of water properties below its triple point temperature for Loss Of Coolant Accidents (LOCAs) into cryostats,
 - the cryogenic He or air as the primary fluid,
 - convective boiling,
 - HTO transport,
 - enclosure radiant heat transfer.
- In 2010 input deck limited to 9999 lines were extended, but the limitation for CV, FL, CF and TF (999) is not changed.

* Merrill B.J., Modifications to the MELCOR code for application in fusion accident analyses, Fusion Engineering and Design 51-52, 2000.

HCPB TBM and the combined HCS

Accidental sequence

ANSYS-temperatures after the plasma disruption are MELCOR initial temperatures.

5

Helium blow-down inside port cell

6

time (s)

7

Beryllium-steam reaction in the long term

MELCOR modelling for failures of ITER FW & TBM FW

MELCOR 3D-model for 1/2 BU

• modeling for 1 pebble d_{1peb} = 1 mm, HSMULT = Npeb.

- thermal conduction between adjacent cells by modeling the heat conducted from one cell to be received by a HS in the adjacent cell in the given direction.
- internal power source: decay heat as table function ~ time.
- radiation: gray-gas-a, emissivity 0.65.

MELCOR simulations

Failure of TBM FW to the beryllium pebble bed

MELCOR results in the long term

Fusion Engineering and Design, in press.

Institute of Neutron Physics and Reactor Technology (INR)

Open issues

- Helium is treated as noncondensible gas.
- CVH-TOT-M.4 cannot show the total H₂ production of the system because p&T of the VV are specialized as a function of time.
- Round-off error due to the single precision of the version 1.8.2
- Iimitation for CV, FL, CF and TF (999).

Updated MELCOR version for fusion is needed !