Exceptional service in the national interest

2

MELCOR Code Development Status

Presented by Larry Humphries Ilhumph@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

MELCOR Code Development

- MELCOR is developed by:
 - US Nuclear Regulatory Commission
 - Division of Systems Analysis
- MELCOR Development is also strongly influenced by the participation of many International Partners through the US NRC Cooperative Severe Accident Research Program (CSARP)
 - Development Contributions New models
 - Development Recommendations
 - Validation

What is the MELCOR Code

- Designed for reactor severe accident and containment DBA simulation
 - PWR, BWR, HTGR, PWR-SFP, BWR-SFP
- Fully Integrated, engineering-level code
 - Thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings;
 - Core heat-up, degradation, and relocation;
 - Core-concrete attack;
 - Hydrogen production, transport, and combustion;
 - Fission product release and transport behavior
- Desk-top application
 - Windows/Linux versions
 - Relatively fast-running
 - SNAP for post-processing, visualization, and GUI

MELCOR Applications

- Forensic analysis of accidents – Fukushima, TMI, PAKS
- State-of-the-art Reactor Consequence Analysis-SOARCA
- License Amendments
- Risk informed regulation
- Design Certification
- Preliminary Analysis of new designs
- Non-reactor applications
 - Leak Path Factor Analysis

SOARCA PROCESS

MELCOR Code Development

MELCOR Code Development History

- MELCOR 1.8.2 (1993)
 - One of the earliest versions for widespread release.
 - Version not recommended for use
- MELCOR 1.8.3 (1994)
 - BH Package
 - CORCON-MOD3
 - Version not recommended for use
- MELCOR 1.8.4 (1997)
 - Retention of molten metals behind oxide shells
 - Vessel creep rupture model
 - Flow blockage model
 - Radiant heat transfer between HSs
 - Hygroscopic aerosols,
 - chemsorption on surfaces,
 - SPARC 90

- MELCOR 1.8.5 (2000)
 - CF arguments could be added to plotfile
 - Consistency checks on COR/CVH volumes
 - Iterative flow solver added
 - Diffusion flame model
 - SS & NS components added for structural modeling
 - Upward & downward convective & radiative heat transfer from plates
 - Particulate debris in bypass introduced
 - Improvements to candling, debris slumping, and conductive, radiative, and candling heat transfer
 - PAR model was added
 - CsI added as a default class
 - Improvements to hygroscopic model
 - Iodine pool modeling
 - Carbon steel was added to MP package

MELCOR Code Development History

- MELCOR 1.8.6 (2005)
 - An option was added to generate input for the MACCS consequences model.
 - Input was added to simplify conformance with the latest best practices (now defaults in 2.x)
 - New control functions (LM-CREEP & PIP-STR) for modeling pipe rupture
 - Modeling of the lower plenum was revised to account for curvature of the lower head
 - Formation and convection of stratified molten pools
 - Core periphery model for PWRs to model core baffle/formers and the bypass region
 - Reflood quench model
 - Oxidation of B4C poison
 - Release of AgInCd control poison
 - Column support structures was added
 - Interacting materials added to allow modifying enthalpy tables
 - Spent Fuel Pool modeling
 - Flashing model
 - Modified CORSOR Booth release model added
 - Jet impaction model
 - Hydrogen chemistry models

- MELCOR 2.x (Beta release in 2006)
 - Code internal structure greatly modified
 - Dynamic memory allocation
 - New input format
 - Formula type control functions
 - New HTGR modeling (PBR, PMR)
 - Counter-current flow model
 - Point kinetics model
 - Smart restart
 - Simplified accumulator model
 - Ability to track radionuclide activities
 - Turbulent deposition model & bend impaction
 - Control function for deposition mass for each deposition mechanism.
 - MELCOR/SNAP interaction in real-time
 - Full report to user of sensitivity values
 - Cell-based porosity
 - Spent fuel pool models
 - Intermediate heat exchanger /machinery models
 - Hydrogen chemistry models

MELCOR Aerosol Deposition

- MELCOR has long had aerosol deposition models for various mechanisms
 - Gravitational
 - Brownian diffusion to surfaces
 - Thermophoresis (Brownian process causing migration to lower temperatures)
 - Diffusiophoresis (induced by condensation of water vapor onto surfaces)
- Newly added deposition mechanisms
 - Turbulent deposition in pipe flow
 - Wood's model for smooth pipes
 - Wood's model for rough pipes
 - Sehmel's model for perfect particle sinks (VICTORIA)
 - Bend Impaction Models
 - Pui bend model
 - McFarland bend model
 - Merril bend model

Definitions: Deposition Velocity In Sandia Laboratories

Particle deposition is modeled in terms of a deposition velocity V_d, defined as the ratio of the time-averaged particle flux to the surface to the time-averaged airborne particle concentration in the duct. This is then implemented into MELCOR in calculating the rate of deposition on a surface:

$$\frac{1}{A} \frac{dM_C}{dt} = V_d C$$

where

- V_d deposition velocity
- *C* particle mass concentration
- $M_C\;$ Mass deposition rate
- A Surface area of deposition surface

New Model: Turbulent Deposition

New Modeling

MELCOR

Definitions: particle relaxation time

- This is the characteristic time for a particle velocity to respond to a change in air velocity.
- For spherical particles of diameter d_p and density r_p in the Stokes flow regime, it is calculated as:

$$\tau = \frac{\rho_m D_p^2 C_{slip}}{18\mu_g} \qquad \qquad C_{slip} \quad - \text{ slip correction factor (-)}$$

 This is nondimensionalized by dividing by the average lifetime of eddies near the walls:

$$\tau^* = \frac{\tau \rho_g (u^*)^2}{\mu_g}$$

 u^* - friction velocity

Wood's Model for Turbulent Deposition

- Turbulent particle diffusion for very small particles where Brownian motion is important to transport particles across the viscous sub layer.
- Eddy Diffusion-impaction regime for larger particles dominated by eddy diffusion where particles are accelerated to the wall due to turbulent eddies in the core and buffer layer and coast across the viscous sub layer.
- Inertia Moderated Regime- very large particles which are subject to reduced acceleration by the turbulent core and little or no acceleration to small eddies in the buffer near the wall.

Turbulent Deposition Cartoon

- Eddy diffusion impaction regime
- Turbulent particle diffusion

Liu & Agarwal
Shimada, et al.
Shobokshy
Wells & Chamberlain
Sehmel (.533 cm tube)
+ Sehmel (1.575 cm tube)
- Sehmel (2.926 cm tube)
- Sehmel (7.137 cm pipe)

Turbulent particle diffusion regime

- Brownian diffusion is important
 - Davies equation

$$u_{t,s} = \frac{Sc^{-2/3}\bar{v}}{14.5\left\{\frac{1}{6}\ln\left[\frac{(1+\varphi)2}{1-\varphi+\varphi^2}\right] + \frac{1}{\sqrt{3}}atan\left[\frac{2\varphi-1}{\sqrt{3}}\right] + \frac{\pi}{\sqrt{3}}\right\}}$$
(1)

Where

 $u_{t,s} =$ turbulent deposition velocity for submicron particles (m/s) $\tilde{v} =$ friction velocity (m/s), defined by the following expression:

$$\tilde{v} = U \sqrt{\frac{f}{2}}$$

f = Fanning friction factor (dimensionless) $<math>\varphi = SC^{1/3}/2.9$

Wood's approximation:

– Approximating function of ϕ :

$$V_d^* = \frac{u_{t,s}}{\tilde{v}} = \frac{3\sqrt{3}}{29\pi} Sc^{-2/3}$$

$$V_d^* = \frac{3\sqrt{3}}{29\pi\tau_*^{1/3}} Sc^{-2/3} \tau_*^{1/3}$$

- In terms of dimensionless relaxation time:

Eddy Diffusion-impaction regime

A second term is added to the equation for deposition velocity:

$$V_d^* = \frac{3\sqrt{3}}{29\pi\tau_*^{1/3}}Sc^{-2/3} \tau_*^{1/3} + K\tau_*^2$$

K is often determined empirically

Investigator	K
Kneen & Strauss (1969)	3.79×10 ⁻⁴
Liu & Agarwal (1974)	6×10 ⁻⁴
Wood (1981b)	4.5×10 ⁻⁴
Papavergos & Hedley (1984)	3.5×10 ⁻⁴

Or calculated from a Fick's law equation (Wood)

 $N = \left(D_p + \varepsilon\right) \frac{dc}{dy}$

where

- N = particle flux ($\#/m^2$ -s)
- D_p = particle diffusion coefficient (m^2/s)
- = particle turbulent eddy-diffusivity (m^2/s)
- c = particle concentration $(\#/m^3)$
- y = distance from surface (m)

Inertia Moderated Regime

Large particles (~> than a micron)

Deposition velocity is either constant

$$V_d^* = \sqrt{\frac{f}{2}} \qquad 10 \le \tau_* < 270$$

Or may decrease with increasing dimensionless relaxation time

$$V_d^* = \frac{2.6}{\sqrt{\tau_*}} \left(1 - \frac{50}{\tau_*} \right) \qquad \tau_* \ge 270$$

VICTORIA Modeling

- Three regimes of turbulent deposition as was predicted by Woods model
 - Davies Model is also used for small particles in the turbulent particle diffusion regime
 - Correlation by Sehmel added for particle impaction regime
 - Correlation fit overexperiments for which sticking was promoted (used in VICTORIA).

$$u_{t,s} = 1.47 * 10^{-16} \left(\frac{\rho_a}{1000}\right)^{1.01} \left(\frac{2 * 10^4 r_a}{D_H}\right)^{2.1} Re^{3.02} \tilde{v}$$

- Correlation fit over a more general data set (not used in MELCOR) $u_{t,s} = 1.0 * 10^{-16} \left(\frac{\rho_a}{1000}\right)^{1.83} \left(\frac{2 * 10^4 r_a}{D_{t,s}}\right)^{2.99} Re^{3.08} \tilde{v}$
- A maximum is placed on the non-dimensional
- deposition velocity not to exceed a value of 0.1.

Merril's Model for Deposition in Pipe Bends

To calculate the inertial deposition of aerosols in pipe bends, the centrifugal force acting on the particle as the fluid turns a pipe bend is used to calculate a terminal velocity in the radial direction:

$$F_{C} = \frac{\pi}{6} (\rho_{p} - \rho_{f}) d_{p}^{3} \frac{u_{f}^{2}}{r_{b}} \approx m_{p} \frac{u_{f}^{2}}{r_{b}}$$

$$u_{p\pm} = BF_{c}$$

The radial distance a particle drifts in this turn is the product of bend travel time and the particle radial velocity:

$$S = \Theta_b B m_p u_f$$

- Assume the fraction of particles that collide with the wall is given by s/D
 - Assumes the particle concentration is uniform

Nomenclature

- particle diameter (m) d_n
- fluid velocity (m/s) = u_{f}
- bend radius of pipe (m) = $r_{\rm b}$
- particle density (kg/m^3) ρ_p
- fluid density (kg/m^3) ρ_f
- particle mass (kg) m_p
- = bend turning angle (radians) $\Theta_{\rm h}$
- = the particle radial drift (m) S В

$$= \frac{1}{(3\pi\mu_g d_p)}$$

PUI Model for Deposition in Pipe Bends

- Based on experiments by Pui et al. For conditions of 10² < Re < 10⁴
- Correlates the deposition efficiency, η_b due to flow irregularity $\eta_b = 1 10^{-0.963 St}$

Where

$$St = \frac{C_c \rho_p d_p^2 U_{ave}}{9\mu D_h}$$

- Represents the fraction of aerosol particles that deposit near the pipe bend because of inertial effects induced by curvature of the fluid streamlines.
- Converted to deposition velocity in Victoria by the following definition: $u_b = \eta_b \frac{U}{L} \frac{V_B}{A}$
 - u_b = deposition velocity for flow through a bend
 - V_B = volume of bulk gas subregion (m^3), as defined in chapter 3
 - A = surface area for aerosol deposition (m^2)

McFarland Bend Model

- McFarland's model is purely empirical
 - Based on fitting an equation to data obtained from physical experiments and Lagrangian simulations.
 - Applicable to arbitrary bend angles and radius of curvature.

0.0506 0.0560 8

$$\eta_b = 1 - 0.01 \exp\left(\frac{4.61 + a\theta St}{1 + b\theta St + c\theta St^2 + d\theta^2 St}\right)$$

$$a = -0.9526 - 0.0568\delta$$
$$b = \frac{-0.297 - 0.0174\delta}{1 - 0.07\delta + 0.0171\delta^2}$$
$$c = -0.306 + \frac{1.895}{\sqrt{\delta}} - \frac{2.0}{\delta}$$
$$d = \frac{0.131 - 0.0132\delta + 0.000383\delta^2}{1 - 0.129\delta + 0.0136\delta^2}$$

$$\delta = \frac{2R_{bend}}{h}$$

MELCOR Bend Models

New Model: Turbulent Deposition

Assumptions of MELCOR Model

- It is assumed that each deposition mechanism acts independently and the total deposition velocity can be calculated from the sum of the deposition velocities for each mechanism
- Turbulent deposition (when activated) takes place only on heat structure surfaces and not on any other surfaces
- Other effects due to high velocity, such as resuspension or re-entrainment are not modeled
- The influence of the aerosol particles on the flow stream is negligible.
 - Not only does this mean that the micro effects on the turbulent flow field, but the macro effects from deposition on surfaces with the subsequent reduction in flow area is not modeled.

New Modeling

MELCOR

New MELCOR Control Function Argument

RN1-DEPHS(HS,Sur,class,mechanism)

Total radionuclide mass of class deposited on side ('RHS or LHS') of heat structure HS (name or number) for turbulent deposition model. The deposition mechanisms that are tracked are as follows:

'DIFF', Diffusion deposition

'THERM', Thermophoresis

'GRAV', Gravitational settling

'TURB', Turbulent deposition in straight sections

'BEND', Deposition in pipe bends

(units = kg)

MELCOR Software Quality Assurance Best Practices

Emphasis is on Automation

Affordable solution Consistent solution

- MELCOR Wiki
 - Archiving information
 - Sharing resources (policies, conventions, information, progress) among the development team.
- Code Configuration Management (CM)
 - 'Subversion'
 - TortoiseSVN
 - VisualSVN integrates with Visual Studio (IDE)
- Code Review
 - Code Collaborator
- Nightly builds & testing
 - DEF application used to launch multiple jobs and collect results
 - HTML report
 - Regression test report

- Regression testing and reporting
 - More thorough testing for code release
 - Target bug fixes and new models for testing
- Bug tracking and reporting
 - Bugzilla online
- Validation and Assessment calculations
- Documentation
 - Available on Subversion repository with links from wiki
 - Latest PDF with bookmarks automatically generated from word documents under Subversion control
 - Links on MELCOR wiki
- Sharing of information with users
 - External web page
 - MELCOR workshops
 - Possible user wiki

MELCOR Quality Assurance: Tracking Code Changes

MELCOR 2.1.4011 Changes January 20, 2012

- Changelist
 - List of code issues and modifications by revision
 - References to bugzilla site
- MELCOR Trends
 - Provide a very general assessment of code modifications
 - Code stability
 - Performance
 - Metrics
 - H2 generated, Cs deposition, deposition on filters, CAV ablation
 - Provided with each public code release
 - Automated as part of testing

Where bug numbers are listed, a hyperlink is provided to allow you to read the details in <u>Melzilla</u>, our defect-tracking system. Please note that bug numbers don't necessarily mean there actually was a bug to fix. These numbers are generated for feature requests as well as defects.

SVN Revision

2201 2275 3214 3514 3585 3585 3585 3583 3583 3583 3981 3981 3981

MELCOR: Self-Documenting

 MELCOR generates a complete list of MELCOR Keywords

Code

- Global record 'PrintInputRecords <filename>'
- Part of required input processing routine means that all records recognized by MELCOR are printed
- MELCOR generates a list of control function arguments recognized by MELCOR
 - Enabled by 'PrintInputRecords'
- MSWord Macro that scans the user guide document for input records and CF arguments
 - Comparison with MELCOR list enables identification of undocumented keywords

LIST OF MELGEN INPUT RECORD * ************************* Global INPUT RECORDS Name Default Output MEL DIAGE MEL_DIAGFILE MEG_OUTPUTF MEG_OUTPUTFILE MESSAGEFILE MEG_HTMLFILE MEL_HTML MESSAGEF MEG HTML MEL_HTMLFILE MEG_DIAGFILE MEL_OUTPUTFILE MEL_OUTPUTF MEG_RESTARTE MEG DIAGE MEL_RESTARTE MEL_RESTARTFILE STATUSFILE MEG RESTARTETLE STATUSF STOPFILE PLOTFILE STOPF EXTDIAGFILE EXTDIAGE PLOTE Optional variables ALLOWREPLACE MELMACC52PLOT NOTEPAD++ PROGRAM MELMAC WRITENEWINP MEL_RFMOD DEFAULTNAMEDCOMMENTBLOCK VARIABLEVALUE COMMENTBLOCK DEFINEVARIABLESFILE DEFINEVARIABLESF DEFAULTDIRECTORY RN1VISUALF RN1VISUALFILE T_CONTOUR MEL_INSTALL MELCOR_INSTALL T CON EXCELFILE EXCEL KEYWORDFILE KEYWORDF PRINTCURRENTSC PRINTDEFAULTSC PRINTINPUTRECORDS EXEC INPUT RECORDS Unique Records EXEC_INPUT EXEC_DTTIME EXEC_TSTART EXEC_RUNONLY EXEC TITLE EXEC_JOBID EXEC_COMTC EXEC_CPULEFT EXEC_CPULIM EXEC CYMESE EXEC DTINCE EXEC DTSUMMARY EXEC_EDITCF EXEC_FORCEPLOT EXEC NOCOPY EXEC_RESTARTCF EXEC_SOFTDTMIN EXEC WARNINGL EXEC PLOTCE EXEC TEND EXEC_WARNINGLEVEL EXEC DTMAXCE EXEC STOPCE EXEC_NOFLUSH EXEC_UNDEF EXEC_CFEXFILE EXEC_PLOTLENGTH EXEC_GLOBAL_DFT EXEC_SS EXEC_WRT Unique Tables EXEC_EXACTTIME EXEC_TIME EXEC_PLOT NCG INPUT RECORDS Unique Records NCG_INPUT **Object Identifiers** Control Function Arguments FDI-FMREL FDI-FMRELT FDI-ETRAN FDI-ETRANT FDI-STGEN FDI-STGENT FDI-OXRAT FDI-OXTOT FDI-ATM-POWR FDI-ATM-HEAT FDI-DEBRIS-T FDI-OX-ENRGY FDI-MASS-ADD FDI-ENTH-ADD FDI-ATM FDI-SXRAT FDI-SXTOT FDI-SRF-POWR FDI-SRE-HEAT FDI-TBD-SURF FDI-SX-ENRGY FDI-MASS-SET FDI-ENTH-SET FDI-SRF CAV-ACTIVE CAV-HTOT CAV-MTOT CAV-DHR CAV-MASS CAV-M CAV-T CAV-RHO CAV-THICK CAV-VOL CAV-VF CAV-MAXRAD CAV-MINALT CAV-TMEX CAV-MEX CAV-QREA CAV-QCNCT CAV-QSURF CAV-TGASMOL CAV-R CAV-Z

CAV-MASSERR CAV-ASURF CAV-CRUSTB CAV-CRUSTT CAV-TSURF CAV-ENERGYERR CAV-CPUT CAV-CPUC CF-VALU BUR-CPUC BUR-CPUE BUR-CPUR BUR-CPUT BUR-N-SE BUR-LOG BUR-TOT BUR-POWER BUR-RAT BUR-ENERGY BUR-FTOT BUR-FENERGY ESF-PCCS-VNTFL ESF-PCCS-TOTENG ESF-PCCS-TOTSTM ESF-ICS-VNTFL ESF-ICS-TOTENG ESF-ICS-TOTSTM ESF-QFC-RAT ESF-QFC-TOT ESE-MEC-RAT

MELCOR Code Validation

Assessment Process

28

Marviken Critical Flow Experiments

- Historical background
 - Tests conducted 1978-1979
 - Marviken power station
 - 100 km SW of Stockholm
 - Designed as a 130 MWe heavy water moderated reactor
 - Never commissioned
 - Oil-fired power station
- MARVIKEN Tests
 - Critical flow tests (CFT-21 reported here)
 - Jet impingement tests (JIT-11 reported here)
 - Aerosol transport tests (ATT-4 test included in volume III)

MARVIKEN Test conditions

	CFT-21	JIT-11
Vessel volume (m ³)	420	420
Vessel inside diameter (m)	5.22	5.22
Standpipe: height (m)	-	18
outside diameter (m)	-	1.04
wall thickness (m)	-	8.8
Discharge nozzle: diameter(m)	0.500	0.299
area (m²)	0.1963	.0702
length (m)	1.5	1.18
Initial Pressure (MPa)	4.9	5.0
Final pressure (MPa)	2.5	1.88
Initial water level (m)	19.9	10.2
Final water level (m)	<0.8	8.0
Initial inventory: water (kg	330 x 10 ³	145 x 10 ³
Steam (kg)	6 x 10 ²	5 x 10 ³
Maximum subcooling (K)	33	< 3

MELCOR Critical Flow Modeling ^{Sandia} Laboratories

- Only Atmosphere
 - sonic flux at the minimum section in the flow path
- Only Pool
 - Subcooled water
 - Henry-Fauske
 - Two-phase water
 - Moody
- Atmosphere & Pool
 - weighted average for the two phases

MELCOR Nodalization

- CFT-21
 - Vessel Boundary Conditions
 - No volumes modeling discharge pipe
 - Vessel Modeled within MELCOR
 - 20 nodes
 - 1 volume modeling discharge pipe & nozzle
 - Necessary to capture moving temperature front (see temperature profile at right)
 - 1 node
 - 1 volume modeling discharge pipe & nozzle
- JIT-11
 - Vessel modeled with 1 node
 - 1 volume in stand pipe
 - 1 volume in discharge pipe

Temperature, deg C

MELCOR CFT-21: Calculated from Applied Boundary Conditions

Boundary Conditions

Calculate Results

This was the approach taken in early RELAP Validation

Ref: NUREG/IA-0007,"Assessment of RELAP5/MOD2 AgainstCritical Flow Data from Marviken Test CFT21 and CFT21, NRC, 9/1986

Results of MELCOR CFT-21 Calculation

- MELCOR calculation matches closely for subcooled conditions at exit (extended Henry-Fauske critical flow)
- MELCOR over-predicts flow for two-phased conditions
 - Moody multiplier, C_M, of
 0.6 for area ratio = 0.5 &
 P = 5 MPa consistent
 with other data*
 - Moody model always over estimates critical flow.
 - Rapid formation of high vapor concentrations at inlet to exit pipe
 - Moody theory overestimates flowrates for stagnation quality > 1%.

*Ardron, K.H., A STUDY OF THE CRITICAL FLOW MODELS USED IN REACTOR BLOWDOWN ANALYSIS, Nuclear Engineering & Design 39 (1976) 257-266.

Assessments: Marviken Critical Flow Exp

Results of MELCOR JIT-11 Calculation

- Containment volume (downstream) was varied to give the correct final pressure
- Time variation of flow calculated by MELCOR is consistent with test data

Mass flow rate vs. vessel

pressure

- Mass flow rate vs vessel pressure
 - mass flow rate is independent of the downstream pressure
 - Experimental uncertainty of 5% indicated by error bars
- Equation 6.13 used by MELCOR
 - MELCOR calculation assumes a fixed value of γ = 1.4
 - Calculating γ does improves calculation very slightly

LACE Containment Bypass Tests

- The LACE tests experimentally examined the transport and retention of aerosols typical of LWRs through pipes with high speed flow and in containment volumes during rapid depressurization.
- Specific objectives of these tests were to provide validation data that would expose important dependencies in modeling deposition. In particular the following test conditions were examined:
 - Effect of gas velocity through the pipe
 - Effect of aerosol composition
 - Effect of aerosol size distribution

Overview of LACE Containment Bypass Tests

- Test Characteristics:
 - Mixed hygroscopic/nonhygroscopic aerosols
 - 30,000 < Re < 300,000

Test	Aerosol	NaOH or CsOH Mass Fraction	Carrier Gas	Gas Velocity (m/s)	Temp. (°C)	Aerosol Source Rate (g/s)	Aerosol Size AMMD (μm)	Mass Retention Fraction
1 \ 1	CsOH	0.42	Air-steam	96	247	1.1	1.6	> 0.98
LAI	MnO							
1 4 2 4	CsOH	0.18	N_2 -steam	75	298	0.6	1.4	> 0.7
LAJA	MnO							0.7
1 1 2 8	CsOH	0.12	N2-steam	24	303	0.9	2.4	> 0.4
LASD	MnO							> 0.7
1420	CsOH	0.38	N2-steam	23	300	0.9	1.9	> 0.7
LAJU	MnO							> 0.7

- Assumed Properties
 - σ=surface tension of possible surface film =0.077 (N/m2)
 - μ =surface viscosity of surface film = 0.0646 (kg/m-s)

Deposition Trends in LACE Containment Bypass Tests

- Very heavy deposition
 - Deposition increased with flow velocity
 - Higher deposition for mixed hygroscopic/dry aerosols
 - Wet deposits possibly flow along pipe walls
 - Dry deposits possibly resuspend
- Deposition density generally highest in 90° pipe bends
- Partial plugging of section 3 in LA3C test influenced test results

MELCOR Velocities for LACE Tests

- LACE tests
 - Reynolds number ranges between 30,000 to 300,000
- Woods model
 - validated against data from 10,000 to 50,000
 - Victoria models
 - Based on Friedlander & Johnston's data (Re = 2800 – 44,000) and Sehmel's data (Re = 4200 – 61000)

Fine Nodalization **The Nodalization Interview Stational Interview Stationa Interview Stational Intervi**

Control Volume	HS	Pipe Sections
CV011	1110	1a,1b,1c
CV012	1120	2,3
CV013	1130	4
CV014	1140	5,6
WARE	272500	1
CV016	1160	8
CV017	1170	9
CV018	1180	10
CV019	1190	11
CV020	1200	12
CV031	1210	13
CV032	1220	14
CV033	1230	15,16
CV034	1240	17,18,19,20,

HEDL 8704-063.26

LA1 (Re ~ 300,000) Code Comparison Report

- Re ~ 300,000
- All MELCOR models are very close in their prediction except Sehmel's model
- All MELCOR models greatly over predict deposition in pipe section 4 (< 2.5 m).
 - Vertical pipe section
- MELCOR models do a better job of predicting overall deposition in test than most of the legacy codes in the code comparison report.

MELCOR

SQA

LACE LA3A Tests Re ~ 133,000

- Wood (Smooth)/Pui combination gives best agreement through pipe, though over predicts deposition downstream
- Sehmel/Pui combination gives best cumulative deposition at end of pipe but over predicts deposition upstream
- Pui model does a better job of predicting deposition in bends.
- Dependency on number of sections is small though results are modestly improved

LACE LA3B Tests Re ~ 31,000

- Wood (rough)/INL combination gives best overall results though it overpredicts deposition in straight sections and underpredicts deposition in bends.
- Wood (smooth)/Pui combination gives best results if deposition upstream in pipe section 4 (< 2.5 m) were correctly calculated.
 - Section 4 was a vertical pipe section
- Sehmel /Pui (VICTORIA) does not capture the deposition profiles of the experiment
- Dependency on number of sections is negligible

MELCOR 1.8.6 to 2.X Input Converter

- Previous standalone converter will be phased out
 - Difficult to maintain and debug
- SNAP converter
 - Easier to maintain
 - Available to all MELCOR users
 - Back conversion from 2.x to 186 as well as from 186 to 2.x
 - Useful for users developing 2.x decks and comparing to 186
 - Recent bugs reported by users are easier to identify by performing a "round-trip conversion" and testing because testing of the conversion is essentially performed with the same code version.

Miscellaneous New Input Record Improvements

- MELCOR now recognizes object numbers as well as character names
- All objects can be referenced by numbers or names
 - i.e., CF_ID, CV_ID, FL_ID, HS_ID, etc.
- Permits mixed number and character references

Is functionally equivalent to

Miscellaneous New Input Record Improvements

- New CVH_THERM Card
 - Original M2.1 input was confusing and overspecified for certain conditions.
 - Implemented for ITYPTH=3
 - Currently optional but will be required
 - Replaces multiple input records
 - CV_PAS, CV_PTD, CV_PAD, CV_VOID, CV_AAD, CV_NCG, CV_FOG, CV_BND
 - Implemented as Table input
 - Data pairs (keyword and value)

141	CV_ID 'ROOM450' 450 !CVNAME, ICVNUM, 186 name: ROOM450
142	CV_TYP 'CVTYPE08' !CVTYP
143	CV_VAT 2 !N CVZ CVVOL
144	1 0.0 0.0
145	2 4.0 368.1
146	CV_THR NonEquil FOG -2 !ICVTHR, IPFSW, ICVACT
147	CV_PAS SEPARATE OnlyAtm SUPERHEATED /IPORA, VaporState
148	CV_THERM 3
149	1 PVOL 'TF' 'CV450PVOL'
150	2 TATM 'TF' 'CV450TATM'
151	3 'N2' 'EDF' 'EDFN2' 1 'O2' 'TF' 'CV45002'
152	!* 9 - Next CV data **********************************
153	CV_ID 'WEST-VOL500' 500 !CVNAME, ICVNUM, 186 name: WEST-VOL50
154	CV_TYP 'CVTYPE09' !CVTYP
155	CV_VAT 2 !N CVZ CVVOL
156	1 0.0 0.0
157	2 4.0 1.0E10
158	CV_THR NonEquil FOG ACTIVE /ICVTHR, IPFSW, ICVACT
159	CV_PAS SEPARATE OnlyAtm SUPERHEATED /IPORA, VaporState
160	CV_PTD PVOL 101351.699E+00
161	CV_AAD TATM 294.3
162	CV_NCG 2 RHUM 0.0 /N NAMGAS MLFR
163	1 'N2' 8.E-01
164	2 *02* 2.2-01
3.65	

Miscellaneous New Input Record Improvements

- Alternate format for mass and temperature tables
 - Specify optional component or material after table length
 - If not present, assumes traditional format
 - First field is the axial elevation index
 - Following fields are values for increasing ring number 1, 2, 3, ...
- Makes table more readable (able to observe trends)

Format

-	-	+	501.0	501.0	504.0	501.0	501.0	501.0	504.0
2	3	1	564.6	564.6	564.6	564.6	564.6	564.6	564.!
3	4	1	564.6	564.6	564.6	564.6	564.6	564.6	564.6
4	4	2	564.6	564.6	564.6	564.6	564.6	564.6	564.6
5	4	3	564.6	564.6	564.6	564.6	564.6	564.6	564.6
19	7	2	716.0	571.9	571.9	571.9	571.9	571.9	571.9
20	7	3	716.0	571.9	571.9	571.9	571.9	571.9	571.9
21	7	4	716.0	571.9	571.9	571.9	571.9	571.9	571.9
22	7	5	716.0	571.9	571.9	571.9	571.9	571.9	571.9
23	8	1	754.0	575.6	575.6	575.6	575.6	575.6	575.6
24	8	2	754.0	575.6	575.6	575.6	575.6	575.6	575.6
25	0	2	754 0	575 £	575 £	575 £	575 £	575 C	575 £

		COR	CIT	62 TFU				
		!	IA	Ring1	Ring2	Ring3	Ring4	Ring5
Φ			1	564.6	564.6	564.6	564.6	564.6
at			2	564.6	564.6	564.6	564.6	564.6
Ľ	at		3	564.6	564.6	564.6	564.6	564.6
te	E		4	564.6	564.6	564.6	564.6	564.6
ສ	o		5	564.6	564.6	564.6	564.6	564.6
≥	ЦĽ		6	644.0	644.0	644.0	644.0	644.0
Ð			7	716.0	716.0	716.0	716.0	716.0
Ζ			8	754.0	754.0	754.0	754.0	754.0

Notepad++ MELCOR 2.1 Language

- Recognition of MELCOR record identifiers
- Style applied to various levels of MELCOR records (comments are gray italics)
- Auto-completion of record identifiers
- Field tips are provided for record fields
- Can be updated by user
- Can be downloaded from download manager with a readme file for installation

Notepad++ MELCOR 2.1 Collapsible I/O

Input

Output

- Expandable/Collapsible Input Decks
 - Input decks are easier to navigate
 - View outline or details
 - !(and !) are used to mark open and close of collapsible region
 - MELCOR Interprets as comments
 - Nested regions permitted
- MELCOR output file is also Collapsible
 - Keyword NotePad++ ON in Global variables generates outline marks
 - Information for each time dump is in outline form

16	1
17	DeckDescription : (
64	F !GlobalData : (
65	CRTOUT
66	MEG_DIAGFILE 'CFT21G.DIA'
67	MEG_OUTPUTFILE 'CFT21G.OUT'
68	MEG_RESTARTFILE 'CFT21.RST'
69	MEL_DIAGFILE 'CFT21.DIA'
70	MEL_OUTPUTFILE 'CFT21.OUT'
71	MEL_RESTARTFILE 'CFT21.RST' NCYCLE 0
72	PLOTFILE 'CFT21.PTF'
73	MESSAGEFILE 'CFT21.MES'
74	Commentblock DEFAULT
75	!)
76	
77	EXEC_INPUT ! (
83	DCG_INPUT !(
5493	HELCOR MESSAGES ! (
0493	TimeEdit it coordinate in
0544	MELCOR VESSIONS 1
0544	TimoEdit is seen at
1551	
8550	MELCOR MESSAGES ! (
4701	
7692	HELCOR MESSAGES ! (
8567	TimeEdit (5.9762E+03) !(
8568	1* * * * * * * * * * * * * * * * * * *
8569	TIME= 5.9762E+03 s = 9.9604E+01 min = 1.6601E+00 hrs =
3570	DT (LAST) = 1.000000E+00 s CYCLE= 6194 CPU T
8571	
8572	MELCOR BASE CODE VERSION
8573	
	2.1 MAR-22-2012
8574	2.1 MAR-22-2012

NotePad++ MELCOR Plugin

- MELCOR Plugin for NotePad++
 - Currently investigating (not developing)
- User guide information available to text editor
 - Context intelligence
- Navigation sidebar
 - **Object recognition**
- **MELCOR** Template
 - QuickText Plugin already allows generation of templates (right) but want to incorporate capability into a MELCOR plugin
 - Typing a MELCOR record identifier, followed by a tab, generates template with user prompts

1 ENCG INPUT ! (
DCH INDIT
BOULTHEOT :(
30 ⊞CVH INPUT !(
150 EFL_INPUT ! (
236 HS_INPUT ! (
237 HS_ID
238 !)

1)Type in Keyword

BNCG_INPUT !(
BDCH_INPUT :(
BCVH INPUT !(
HFL_INPUT !(
HS_INPUT !(
HS_ID <shsname> <ihsnum> ! (</ihsnum></shsname>
HS_GD <rect b_hemi="" cyl="" sphere="" u_hemi=""> <ss no=""></ss></rect>
HS_EOD <rhsalt> <ralpha></ralpha></rhsalt>
HS_MLT <rhsmult></rhsmult>
HS_SRC <cf no="" tf=""> <snameips> <rvsmult></rvsmult></snameips></cf>
HS_ND <inf> <instr></instr></inf>
<iindx> <rxi> <rtempin '-'="" or=""> <smatnam> <rqfrcin></rqfrcin></smatnam></rtempin></rxi></iindx>
E: Left_Inside_Boundary
HS_LB <sbc type=""> <sname cf="" tf=""> <bc volume=""> <mass transfer=""></mass></bc></sname></sbc>
HS_LBR <remisw> <sradmodel> <rpath length=""></rpath></sradmodel></remisw>
HS_LBP <int ext=""> <rcpfp> <rcpfa></rcpfa></rcpfp></int>
HS_LBF <cf cv="" dtdz=""> <namecfornumaxl></namecfornumaxl></cf>
1)
e: ر Right_Outside_Boundary
HS_RB <bc type=""> <name cf="" tf=""> <bc volume=""> <mass transfer=""></mass></bc></name></bc>
HS_RBR <remisw> <sradmodel> <rpath length=""></rpath></sradmodel></remisw>
HS_RBP <int ext=""> <rcpfp> <rcpfa></rcpfa></rcpfp></int>
HS_RBF <cf cv="" dtdz=""> <namecfornumaxl></namecfornumaxl></cf>
(In a) Dress Table again for U.C. ID to realist
3) Press lab again for HS ID template

Questions?

