

Wir schaffen Wissen – heute für morgen

Air ingress experiments Q-10 and Q-16 analysis with MELCOR 1.8.6

L. Fernandez-Moguel

EMUG 2012

16-17 April 2011

Outline

- QUENCH facility
- Q-16
 - Preoxidation
 - Difference between code versions MELCOR 1.8.6 YR and YT
 - Air Ingress phase
 - Nodalization influence
 - Oxidation kinetics
 - Oxygen consumption
 - Reflood
- Q-10
 - Preoxidation
 - Air Ingress phase
 - Reflood
- Conclusions

QUENCH Facility

QUENCH-16

Difference between YT and YR versions

- The YT version gives different oxidation behavior than the YR version:
 - First we believed that breakaway was activated regardless the option is selected in card COROXB.
 - But looking closer to the fortran it was realised bkwy model is only applied in air. Nevertheless it gives a perfect breakaway behavior in steam.
 - We believe that it must be a bugg in the YT version
 - · This seem to be corrected for the YV version. It gives very similar results to YR
- For the rest of the calculation the MELCOR 1.8.6 YR version was used.

PAUL SCHERRER INSTITUT

QUENCH-16 preoxidation

- The best agreement was obtained with CP/UH and R = 3.6 mohms.
- The axial calculated Temperature profile is in good agreement with the experimental results

Nodalization influence

Nuclear Energy and Safety Laboratory for Thermal Hydraulics Severe Accident Research Group, SACRE

difference

during the

steam phase.

- Big influence during the air phase due to the fast oxygen consumption
- The refined mesh was used for the rest of the analysis

QUENCH-16 air phase

- Increase in slope marks onset of rapid oxidation
- The extra steam acted as a coolant as long as there is still oxygen available (including after starvation onset)

Q-16 oxygen consumption

- The oxygen starvation predicted by MELCOR was earlier than in the experiment
- The air kinetics has a lower limit when steam is present (steam kinetics)
- There is a fortran line **DXMDT = MAX (DXMDTS, DXMDTO)** that forces the code to use the maximum between steam and air kinetics. Why?

QUENCH-16 air phase adjusted Kinetics

ŝ

2000 TFS 8/9 550 num TFS 4/8 450 num TCR 7 350 num TFS 9/6 250 num TFS 2/5 150 num TFS 2/4 50 num COR-TCL_111_CPUH COR-TCL_109 COR-TCL_308 COR-TCL_308 1800 1600 COR-TCL_111_CPUH/15 COR-TCL_210 COR-TCL_109 COR-TCL_308 COR-TCL_107 Temperature (K) 1400 COR-TCL_107 COR-TCL_306 COR-TCL_111_CFUH/2.0 COR-TCL_210 COR-TCL_109 COR-TCL_308 . . COR-TCL 107 1200 1000 800 600 9000 10000 11000 8000 Time (s) 19 Int H2 final COR-DMH2-TOT-CP/UH COR-DMH2-TOT-CPUH/1.5 COR-DMH2-TOT-CPUH/2 18 17 Mass (g) 16 15 14 7000 7500 8000 8500 9000 9500 10000 10500 11000 Time (s)

Time (s)

Nuclear Energy and Safety

 Slower kinetics were calculated for oxygen (setting lower kinetics for both: steam and oxygen)

•The closest agreement with the onset of starvation is found when CPUH/2 is used

•The best temperature agreement was obtained when CPUH/1.5 was used

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

QUENCH-16 reflood

QUENCH-10 preoxidation

- The input used for Q-10 was the same as the one using for Q-16 by just changing the boundary conditions.
- Aim at assessing models under 2 different conditions.
- The temperatures during the pre-oxidation phase as well as the hydrogen generation where in fair agreement with the experimental results.

QUENCH-10 air phase

- Melcor calculated a later oxygen consumption
- The oxidation correlation was adjusted (CPUH*1.5) to adjust the time of fully consumption.
- An acceleration in the calculated temperatures is observed.
- The shroud temperatures show that the transition from regular to accelerated kinetics was not captured.

QUENCH-10 reflood

Nuclear Energy and Safety Laboratory for Thermal Hydraulics Severe Accident Research Group, SACRE

EMUG, 16-17 april 2012

Nuclear Energy and Safety Laboratory for Thermal Hydraulics Severe Accident Research Group, SACRE

- The pre-oxidation phase was very well reproduced by MELCOR using the same input deck for both experiments, showing consistency.
- The oxygen consumption was understimated for the QUENCH-10 and overstimated with QUENCH-16.
 - One explanation is that the oxygen concentration might have played a role.
 - There maybe other reasons
- The excursion observed in Q-16 was understimated
 - Causes of excursion are not fully resolved
- The influence of the nodalization during the air phase was shown

Buggs:

- The YT version has a bugg for the oxidation kinetics
- When steam and air are present MELCOR assumes that the fastest correlation has to be used
 - DXMDT = MAX (DXMDTS, DXMDTO)

Thank you for your attention

Presented at CSARP, 14-16 September 2010

Nuclear Energy and Safety Laboratory for Thermal Hydraulics Severe Accident Research Group, SACRE

• SNAP has proved very useful in conveying the results and helps interpretation

• No major complications to import the QUENCH input to SNAP

- The fuel material of ZIRCONIUM-OXIDE was not recognized by SNAP. One has to use the ZRO2-int instead
- When being asked to overite a file not posible
- Example: Q-16 with SNAP