

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institute

Investigations of Gas stratification break-up in Containment for reactor safety issues

Prepared byDomenico PaladinoPresented byJon Birchley

Third EMUG Meeting 11-12 April, 2011, ENEA, Bologna

PSI, 6. April 2011

□ Introduction and motivation of the OECD/SETH-2 project

- □ Investigations carried out in the PANDA facility
- □ Results from selected PANDA series
- □ Follow-up activities

□ Conclusions

In a nuclear power plant the containment is the last barrier for avoiding the release of any radiological material to the environment, therefore **the safety systems should always ensure containment integrity**

Analysis of thermal-hydraulic process as occurring in a LWR containment building under accident conditions (DBA, BDBA) is very **complex**, due to the large number of inter-related parameters/proceses:

- BWR and PWR have differences in the safety systems
- Performance of active (e.g. spray, cooler, etc.) or passive safety systems (e.g. recombiner, rupture foils, PCC, etc.) varies during the evolution of a postulated accident
- Modeling of Physical phenomena: e.g. jet, plume (positively or negatively buoyant), diffuse flow, transport, mixing, stratification, condensation, re-evaporation, etc.

Advanced Lumped Parameter (LP) and Computational Fluid Dynamic (CFD) codes are **the only tools** for the analysis of DBA and BDBA in real reactors:

•At the present the Assessment and Validation (A&V) of the codes is one limiting factor in their reliable application.

 One of the hindrance in the A&V is the lack of experimental data for the representation of a broad range of phenomena and scenarios with safety relevance for LWRs

The experimental data should be obtained:

In large-scale, multi-compartment facilities to minimize distortion effects due to scaling considerations.

•With instrumentation having temporal and spatial resolution adequate to validate both advanced LP and CFD codes. **OECD/NEA/WGAMA and IAEA workshop...**

A PIRT-Type Exercise on NRS items requiring CFD

Overall Priority Ranking (Single-Phase)

ltem No.	Short Description	Score /36
1	PTS	31
2	Hydrogen mixing and combustion in containments	31
3	Flows in complex geometries	29
4	Boron dilution	28
5	Sump strainer clogging	26
6	Aerosol deposition in containments	26
7	Thermal fatigue	23
8	MSLB (leading to asymmetric flow)	22
9	Hot-leg heterogeneities	21
10	HTGR lower plenum mixing	16
11	HTGR core heat transfer	15
12	HTGR reactor cavity cooling heat transfer	13
13	VHTR heat transfer issues	12
14	Flow behind blockages in LMFRs	9
15	Flow-induced vibrations in LMFRs	8
16	Core barrel vibration in APWRs	6

Overall Priority Ranking (Multi-Phase)

ltem No.	Торіс	Score /36
1	Reflooding following LB-LOCA (including UPI and EPR)	28
2	PTS	27
3	CHF	26
4	Condensation-induced water hammer	26
5	Sub-cooled boiling in PWRs	23
6	Steam condensation in pools	19
7	Induced break	16
8	Gas entrainment in LMFRs	9
9	Special issues for CANDU reactors	3

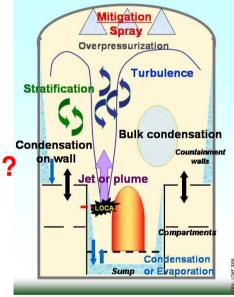
H/M/L were assigned the numerical values 3/2/1, respectively, and N/A the value zero. The numbers from the 12 participants were then summed to give a total priority value (max. 36).

Severe Accident Research Priorities (SARP)

EUROSAFE (5th FWP EC): Identification of areas of needed research in the domain of severe accident in nuclear power plant

 Outcome: identification of 21 research issues with recommendation for experimental programs and code developments

SARP is one of the work-packages of SARNET: reviewing and reassigning priorities by ranking research issues (4 ranking grades: closed issue, low priority, medium priority, high priority)


 Containment atmosphere mixing and hydrogen combustion/detonation- High priority Progress in Nuclear Energy 52 (2010) 11-18

Hydrogen released into the reactor containment during the course of a severe accident

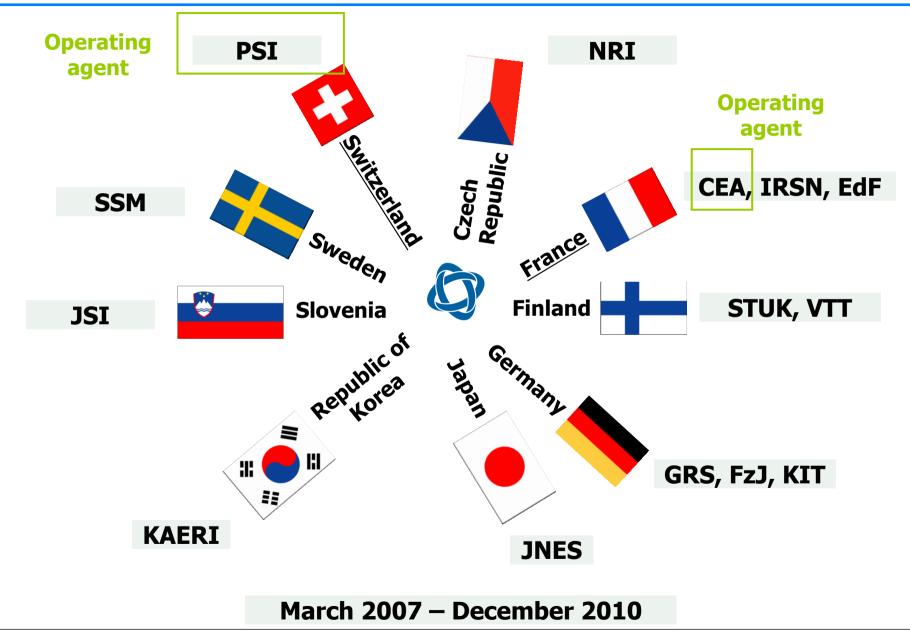
- Homogeneous distribution or stratification ?
- How long a stable stratification would be maintained ?

 ✓ Erosion of the stratified layers by mass or heat sources and heat sinks

The first question was investigated during OECD/SETH, EU/ECORA projects

The second question is the subject of the OECD/SETH-2 project

<u>Subject</u>: Investigating of key safety issues for LWR containment Thermal-hydraulics which are not covered by reliable simulations


Focus: Destabilization and mixing of hydrogen stratification and large scale containment integral tests

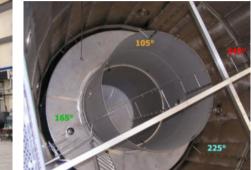
<u>**Objectives</u>**: Generation of experimental database for Advanced Lumped Parameter codes and CFD codes. Assessment/validation related to investigation of **gas stratification break-up by:**</u>

- Horizontal or vertical, negatively buoyant jet or plume
- Flow induced by safety system or component activation, e.g. spray, containment cooler, heat source simulating recombiner
- Sudden opening of hatches separating two large volumes

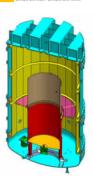
Participants to the OECD SETH-2 Project

Facilities used in SETH-2

V



PANDA Drywell


Volume = 2 x 90m³ Diameter = 4m Height = 8 m Free volume with Interconnecting line diameter ~ 1m Scaling : Simplified Boiling Water Reactor (SBWR). Height = 1:1 Volume = 1:25

Specified: 24 PANDA tests

MISTRA

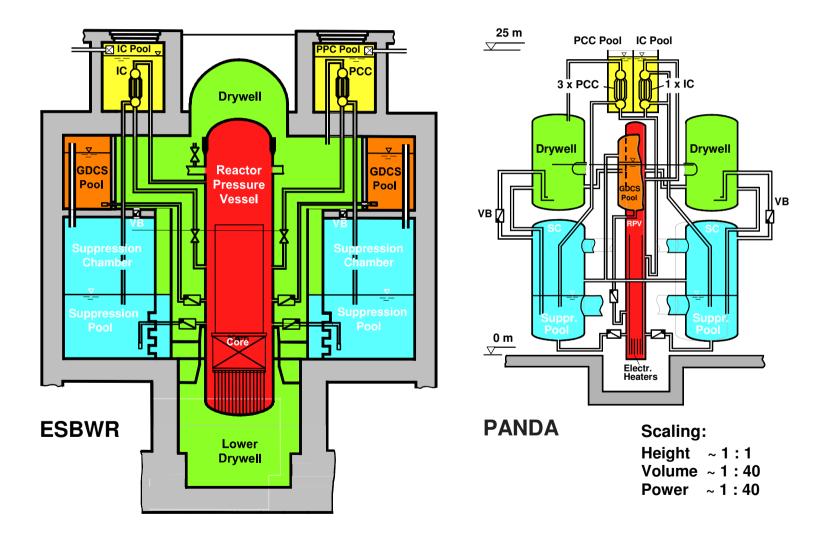
) CED

MISTRA

Volume = 97.6m³ Diameter = 3.8m Height = 7.4 m Compartmented volume

Scaling : Pressure Water Reactor (French PWR). Height-Diameter ~ 1:10 Volume = 1:700

Specified: 6 MISTRA tests



PSI contribution to OECD/SETH-2

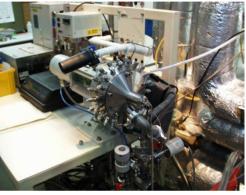
Project manager:		
Dr. Domenico Paladino Leader of the Experimental Group		
Logistic and m	eeting organization:	
Renate van Doesburg LTH Secretary		
PANDA test performance, documentation, test analysis and code simulations:		
Dr. Michele Andreani	Analysis and modeling Group. GOTHIC Simulations	
Dr. Medhat Sharabi	Analysis and modeling Group. FLUENT Simulations	
Wilhelm Martin Bissels	Experimental Group	
Dr. Nejdet Erkan	Experimental Group	
Max Fehlmann	Experimental Group	
Klaus Kaiser	Experimental Group	
Dr. Ralf Kapulla	Experimental Group	
Dr. Guillaume Mignot	Experimental Group	
Martin Ritterath	ETHZ-IET-PSI, PhD student	
Chantal Wellauer	Experimental Group	
Dr. Robert Zboray	Experimental Group	
Dr. Jörg Dreier	NES-LTH, Scientific support and project deliverables	
Mechanical, Electrical, Electronic, Control, etc.	PSI LOG- Various Groups	
Members in the Programme Review G	roup (PRG) and Management Board (MB):	
Dr Jörg Dreier	NES-LTH	
Prof. Horst Michael Prasser	LTH Head	

ESBWR versus PANDA

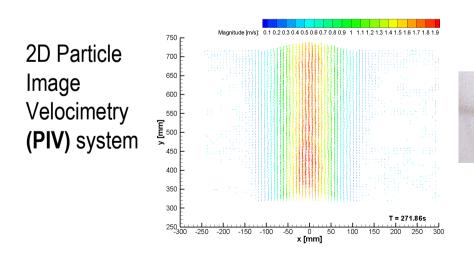
PAUL SCHERKER INSTITUT PANDA Major Test Programs

- 1991-1995 EPRI/GE: Investigation of passive decay heat removal systems for SBWR
- 1996-1998 EU-4th FWP: Passive decay heat removal system tests for: - SWR1000 (IPPS); ESBWR (TEPSS)
- 1999-2004 EU-5th FWP: Effect of Hydrogen distribution on passive systems (TEMPEST); Investigation of BWR-natural circulation stability (NACUSP)
- 2002-2006 OECD/NEA: Gas mixing and distribution in LWR containments (SETH)
- 2007-2010 OECD/NEA: Resolving LWR containment key computational issues (SETH-2)
- 2010-2013 EU-7th FWP: Containment thermalhydraulics of current and future LWRs for severe accident management (ERCOSAM-SAMARA)
- 2012-2015 OECD/NEA: Primary circuit-Containment response to DBA and BDBA for various ABWR and PWR (e.g. EPR, AP1000, APR1400, VVER) (EDARS proposal)

PANDA Vessels (Construction Phase)

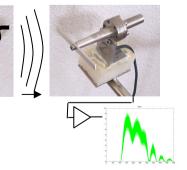

PANDA facility instrumentation

Extensive basic instrumentation


Temperature sensors	~1000
Pressure transducers	49
Flow meters	20
Electrical power meters	7

Gas concentration measurement system

Gas (He/air/steam) concentration distribution measured by Mass spectrometry



Gas velocity-field measurement

Novel, alternative measurement methods

Ultrasonic sensor system (speed of sound sensors)

Thermocouple Tube (1D gas velocity sensor)

SETH-2 PANDA test campaign

Series	Investigation	Performed	Specified	
Series ST1	Low momentum vertical steam release at various positions:	15 tests	9	
Series ST2	Low momentum horizontal jet:	4	4	
Series ST3	Containment spray:	4	3	
Series ST4	Containment cooler:	6	4	
Series ST5	Heat source simulating Recombiner:	6	3	
Series ST6	Sudden opening of hatches separating two volumes:	3	1	
Series ST7	Long-term cooling system test (s): Substituted with a test of ST3 type	1	-	
Heat losses ch	naracterization of Vessels 1-2	1	-	
Diffusion tests: He-air, He-steam 2 -				
Total number of tests:4124				
Specified: test cases each with different test conditions.				

Performed: specified + selected repetitions (test repeatability, instrumentation) + few cases initially not specified

PANDA tests addressing phenomena challenging for the codes

Implementation in PANDA of new components and related systems

•Obtaining the PANDA test specified conditions

Obtaining CFD grade experimental data

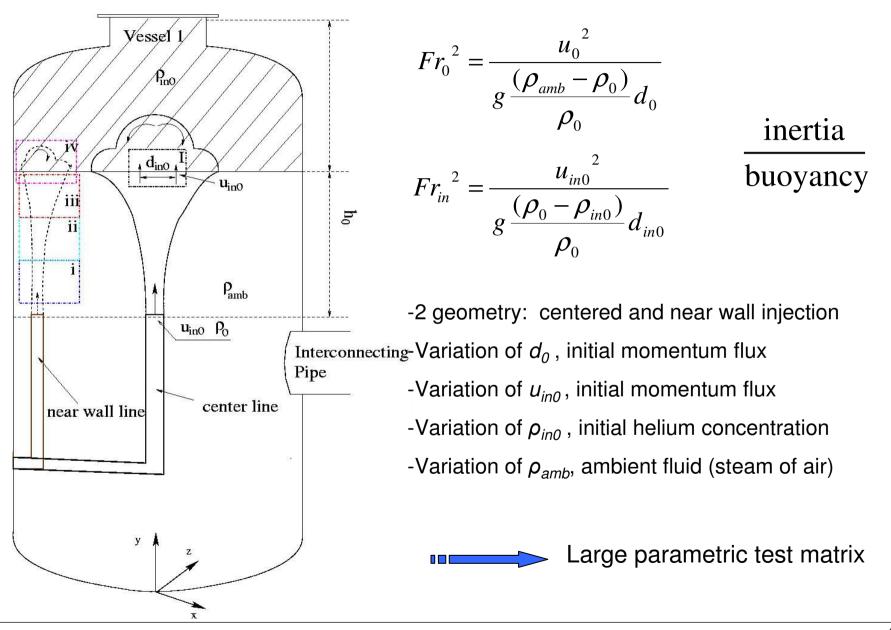
Project Schedules

Low momentum vertical fluid release (ST1)

Issues:

The hydrogen which would be released in a postulated severe accident would mix with the original containment gas (air or nitrogen) and steam and may lead to a stratified gas atmosphere. Hydrogen stratification break- up by negatively buoyant plumes and jets.

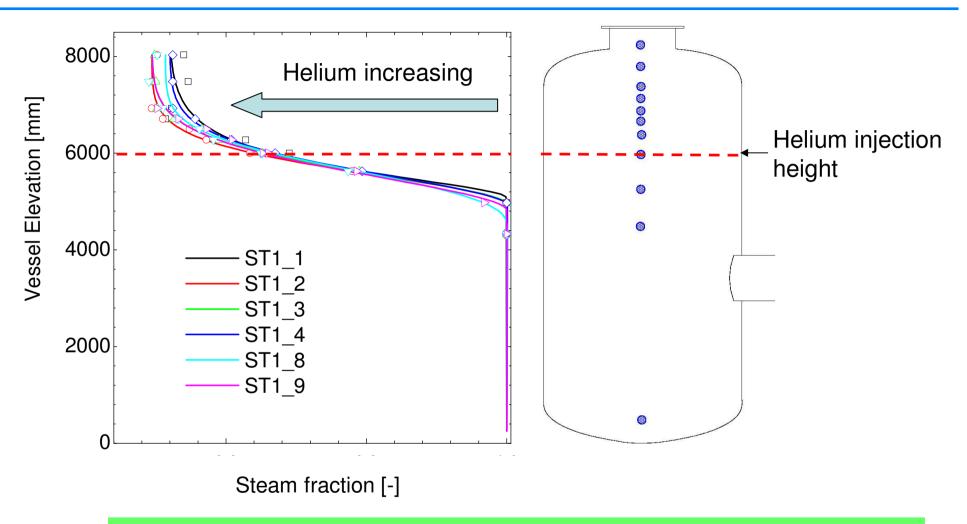
Main objectives:


Parametric investigation of gas stratification break up by vertical fluid release

Characterization of erosion and diffusion effects

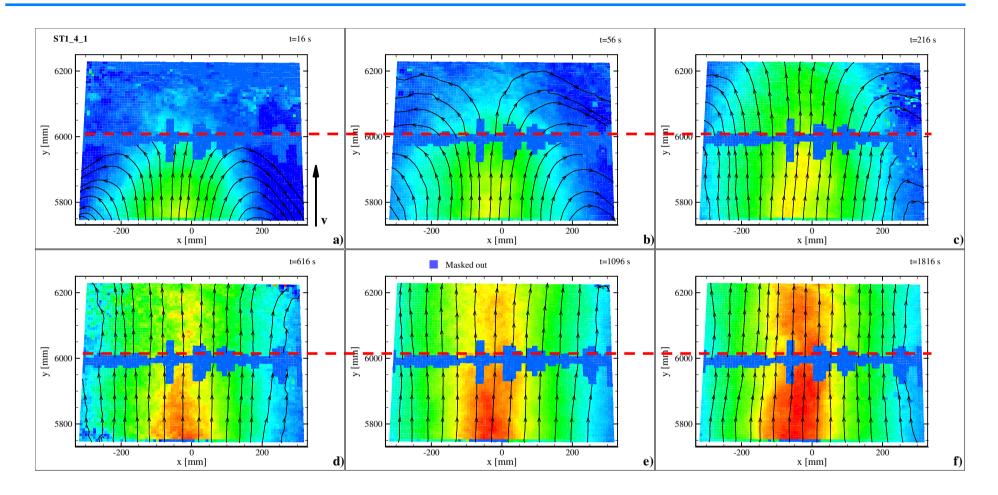
"Facility-related" effect on the evolution of stratification break-up (MISTRA LOWMA-PANDA ST1_7, ST1_7_2 counterpart test)

ST1: Experiment Description


ST1: Parametric Test Matrix

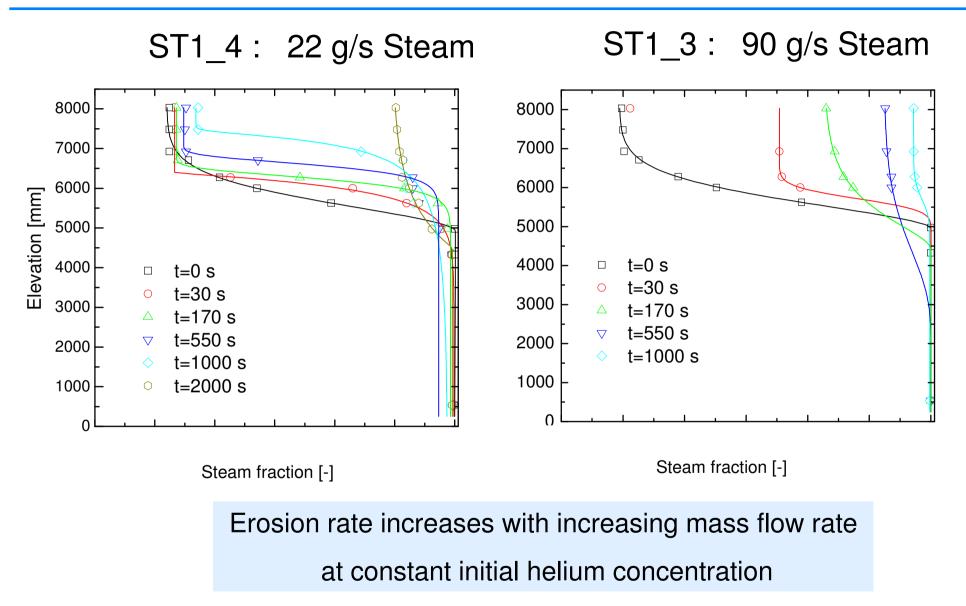
Test	Ambient Fluid	Re	Fr ₀	Fr _{in}	He %	Geometry	
ST1_4	Steam	10000	2.3	0.5 🔶	Low	Center	
ST1_1	Steam	14000	3.1	0.7	Low	Center	
ST1_2	Steam	28000	6.2	1.4 🗲	Low	Center	
_ST1_3	Steam	42000	9.3	2.1	Low	Center	
ST1_5	Steam	14000	3.1	0.5 🔶	High	Center	
6	Steam	39000	8.7	1.5 🗲	- High	Center	
_ST1_Z_	Air	14000	-	0.6	High	Wall	
ST1_8	Steam	9000	3.2	0.5 🔶	Low	Wall	
	Steam	27000	9.3	1.5 🗲	Low	_WalL	
Variation of initial momentum							
Variation of injection location							
CITICITY Variation of fluid							

Variation of initial helium concentration



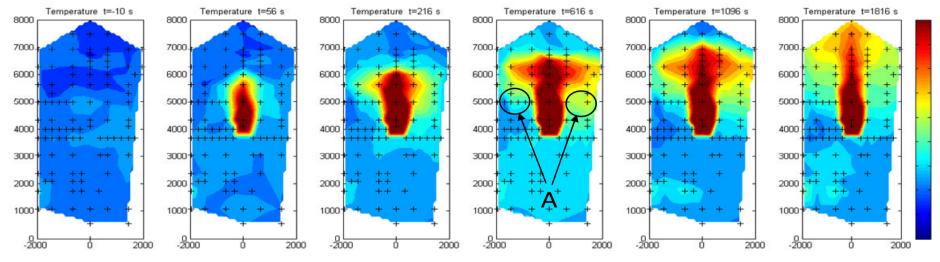
ST1: Initial Conditions

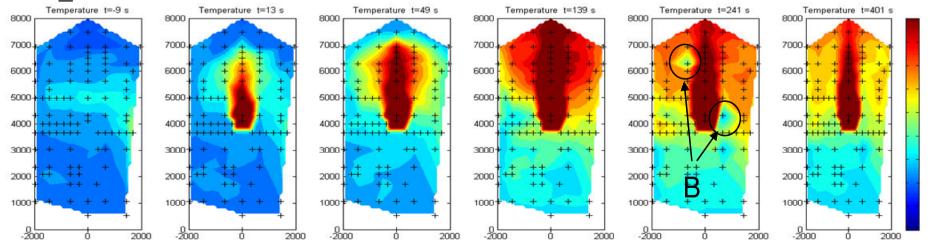
Good reproducibility of the initial helium layer concentration profile.

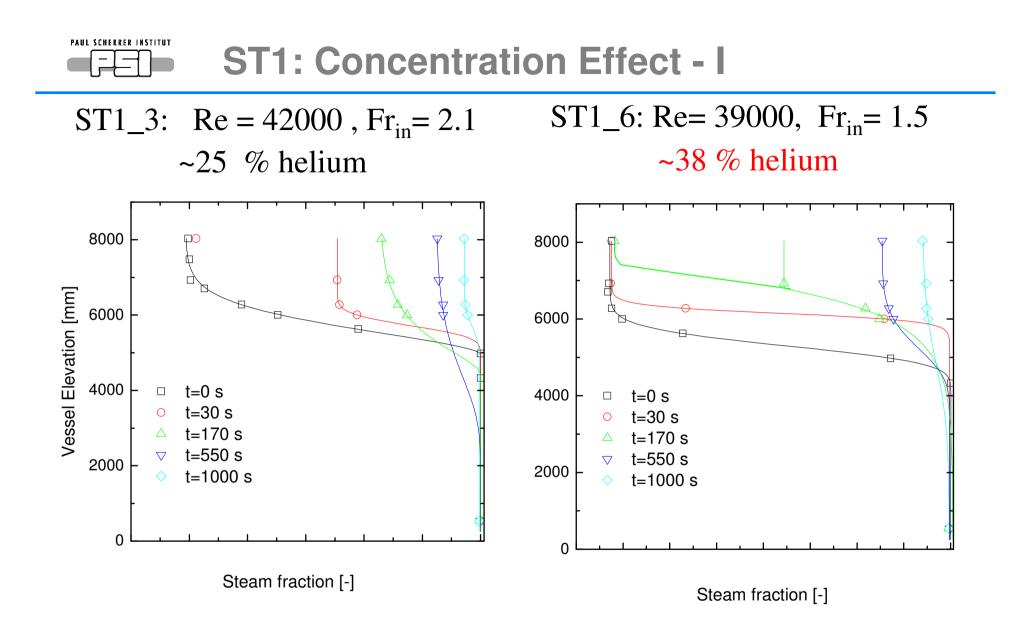

ST1: Velocity measurements with PIV

The helium-rich layer is initially located in Vessel 1 in the upper region: ~6-8 m

The PIV investigation area is around the initial "interface" between steam and steam/helium regions

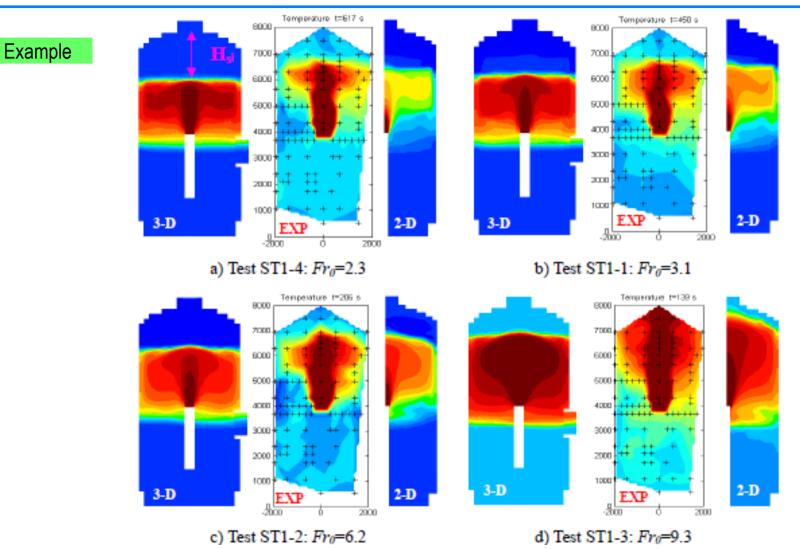




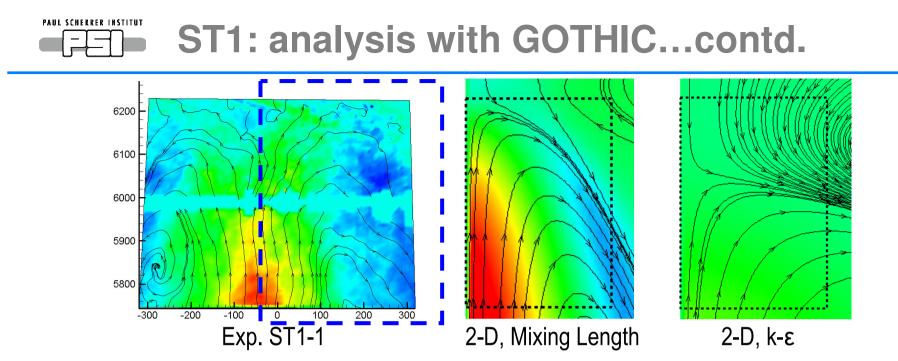

ST1: Momentum Effect - II

ST1_4

ST1 3



Erosion rate increases with decreasing initial He-concentration



ST1: analysis with GOTHIC

• 3-D (coarse mesh) model underpredicts the penetration of the jet. No further result is shown

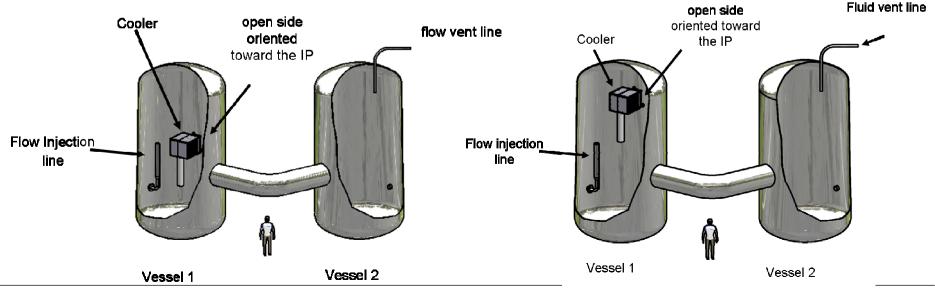
• 2-D model with finer mesh better represents the erosion of the initial stratification

• The velocity field measured with the PIV (contours show the vertical component of velocity) in the region of the density interface shows that the jet is still narrow and streamlines are strongly curved. This shows the existence of a "fountain" flow

• The k-ε model predicts a broader jet and nearly horizontal streamlines. This leads for some conditions to inaccurate prediction of jet upwards penetration and stratification erosion

• The results with the Mixing Length model (with optimized value of the ML) shows that the correct velocity field can be obtained for certain cases

The correct modeling of turbulence has a strong effect in the jet-layer interaction region


ST4: Containment cooler

Issues:

In case of severe accident, with release of hydrogen, the condensation induced by the cooler activation as well as the flow induced by the cooler will have an effect on the hydrogen distribution in the containment

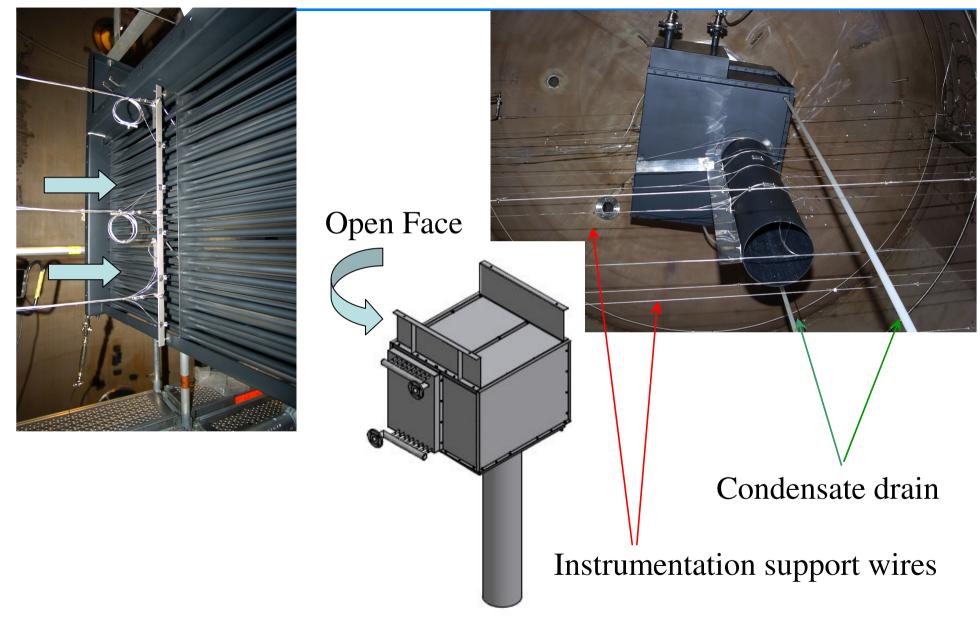
Main objectives:

To investigate the effect of cooler on the gas transport in the containment, in particular whether a local increase of helium concentration may be mitigated (i.e. break-up) with the cooler in operation

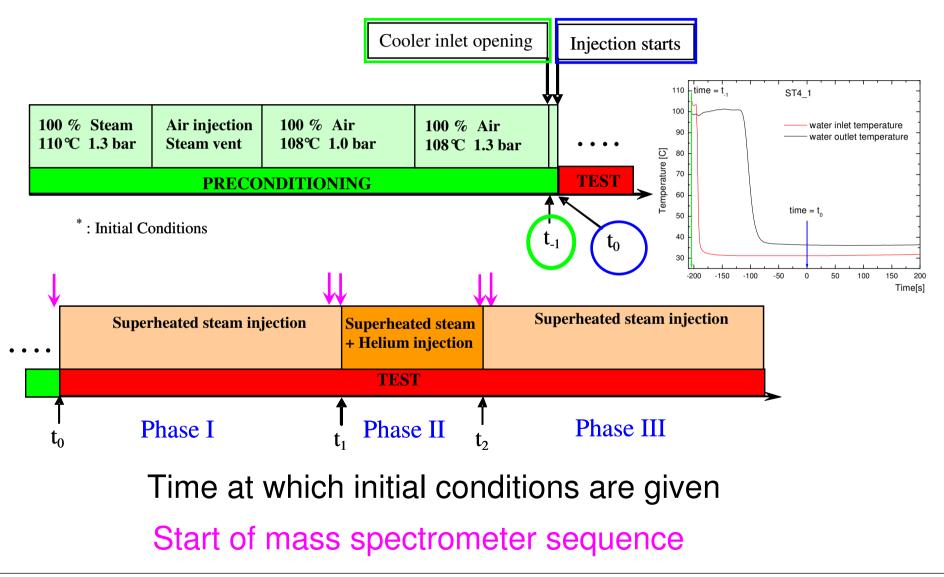
PAUL	SCHEI	RER	INS:	TUTI
	—	_	Π	
	J			

ST4: configurations

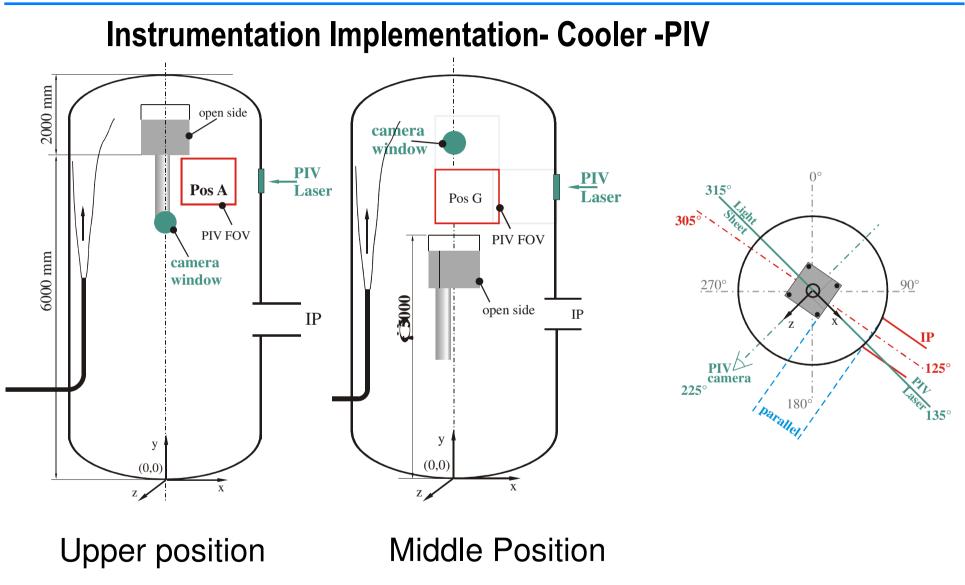
 PHASE III: Steam is injected for 3600 s at 40 g/s ST4_2, ST4_3 and ST4_4: →Constant pressure (1.3 bar) ST4_1: no venting : 	IP
 ST4_1: no venting : → PRESSURIZATION + Helium Vessel 1 	

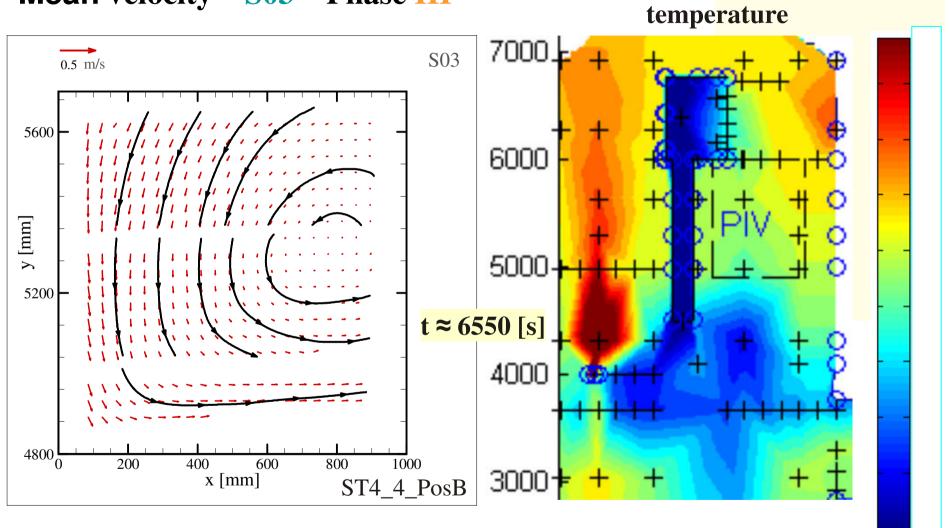

 \rightarrow Same gas injection scenario for all 4 tests

ST4_1, ST4_2, ST4_3

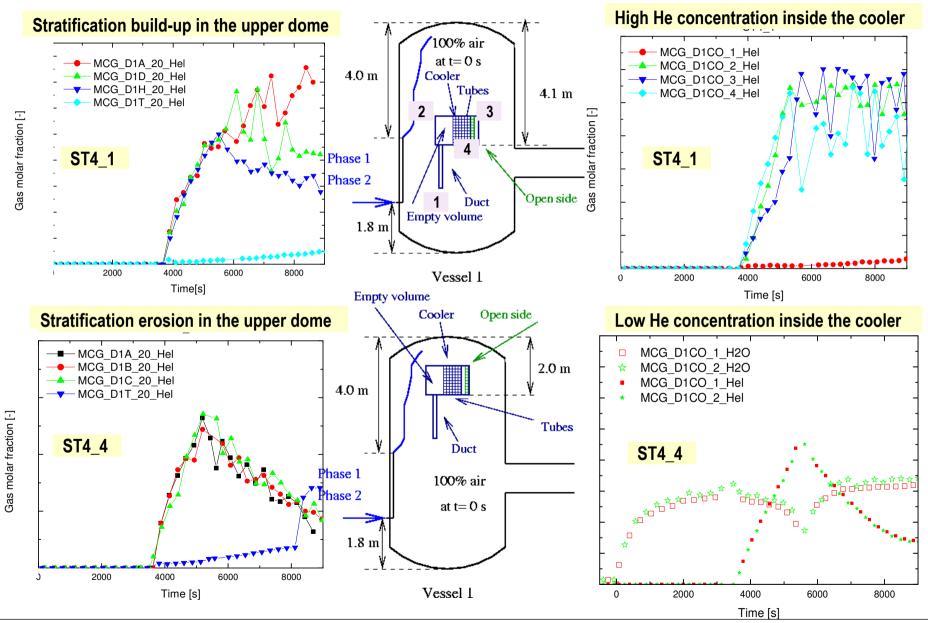

→ Duct, cooler location, pressurization (venting) vary

	ST4_1	ST4_2	ST4_3	ST4_4
Location	4 m	4 m	4 m	6 m
Duct	Yes	Yes	No	Yes
Venting	No	Yes	Yes	Yes





ST4: flow patterns


Mean velocity – S03 – Phase III

PAUL SCHERRER INSTITUT

Upper Position + Pressurization: PIV Observation

ST4: helium concentration results

□PANDA test campaign consisting of 41 tests has been concluded according project schedule

□Facilities upgrading e.g. auxiliary systems, mitigation tools (spray, recombiners-heat source, cooler), enabled us to obtain tests with well controlled initial and boundary conditions and with an **excellent repeatability**

□Efforts done to improve the various measurement systems (temperature, gas concentration, PIV, novel instrumentation, etc.) allowed for obtaining, high quality data also for the most challenging tests (e.g. cooler-condensation, spray, rupture disk, etc.)

□The PANDA test results contributed to an improvement of the knowledge on phenomena which have a high relevance for LWR containment safety issues

□The relevance and **applicability to plants** of PANDA tests will be further discussed in the forthcoming **OECD/SET-2 analytical workshop**

Analysis of SETH (1-2) PANDA tests

Organization (18)	Code (10 + 1?)	Country (13)
CEA	TONUS	France
ISRN	TONUS, ASTEC	France
EdF	NEPTUNE	France
FZK	GASFLOW	Germany
FZJ	CFX	Germany
GRS	CFX, COCOSYS	Germany
JNES	FLUENT	Japan
KAERI	MARS	Korea
JRC	CFX	The Netherlands
NRG	FLUENT-CFX6	The Netherlands
KFKI	FLUENT	Hungary
NRI	FLUENT, MELCOR?	Czech Republic
PSI	GOTHIC, CFX, FLUENT, MELCOR?	Switzerland
US NRC	FLUENT, MELCOR?	USA
Vattenfall	FLUENT	Sweden
VTT	FLUENT	Finland
AECL	GOTHIC	Canada
IBRAE	FLUENT	Russland

Approach used in the analysis:

- In-kind contribution by individual Groups
- Various EU and OECD analytical workshops
- Systematic approach in the EU 5FWP ECORA Project in applying BPG

Analytical workshop on OECD SETH and SETH-2 experimental data

OECD/NEA, Paris, France, 13-14 September 2011

Attached benchmark on PANDA ST1_7 and MISTRA LOWMA

PAUL SCHERRER INSTITUT

Investigations in the PANDA programs

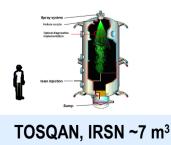
PANDA	SETH 2002-2006	SETH-2 2007-2010	EDARS 2012-2015	
Basic Phenomena	One-phase Plumes –jets Stratification build- up	One-phase Plumes-jets De-stratification	One / two -phases Plumes-jets Flow- obstructions	
Safety components rupture foils		Spray, cooler, heat source	Combination of 2 components: e.g. spray+ cooler, etc.	
Gen II-III+ Systems		Combination of compartments, and components, i.e. system		
PANDA EU-ROSATOM ERCOSAM-SAMARA (2010-2013)				
Safety components	s Accident scena	arios from real plants sca	led to different facilities	

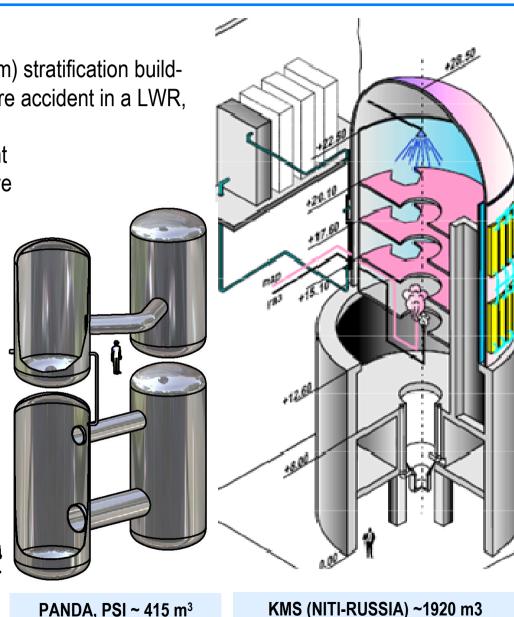
ERCOSAM-SAMARA project

Objectives:

investigate characteristic of hydrogen (helium) stratification buildup, in test sequence representative of a severe accident in a LWR, well chosen from existing plant calculations
Operation of Severe Accident Management systems (SAMs); sprays, coolers and Passive Auto-catalytic Recombiners (PARs).

MISTRA, CEA ~100 m³


Approach:


experiments at four different scales

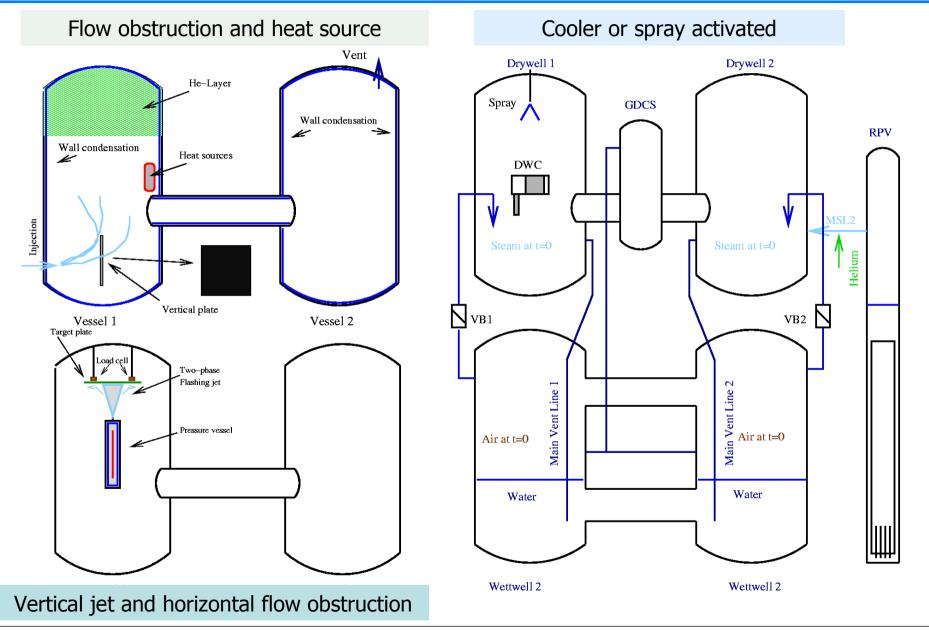
 scaled down prototypical accident conditions in real plants

Pre- and post- test analysis

with various codes

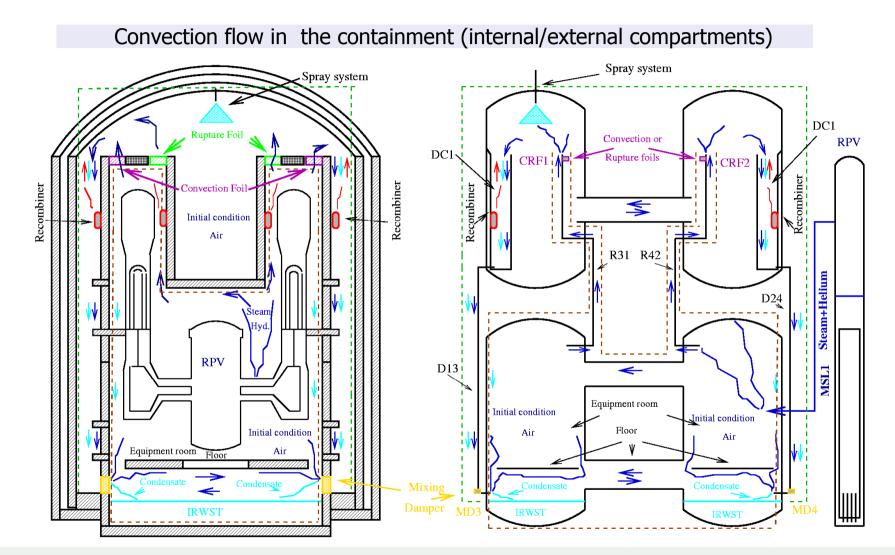
 <u>Basic phenomena</u>: containment stratification break-up by diffuse flow source, created by impinging of jet (one phase), two-phase flashing jets, use of horizontal or vertical flow obstructions

 <u>Complex flow pattern</u>: interaction of two LWR safety systems: e.g. combination of spray and cooler or two heat sources


LWR system response:

•BWR system thermal stratification in wetwell pool, effect of spray and cooler activation, interaction of primary circuit and passive containment cooling system

•PWR system: overall natural circulation flow in the containment for effect of rupture foils opening and activation of safety systems.



EDARS: selected PANDA series

EDARS: selected PANDA series...contd.

PAUL SCHERRER INSTITUT

The tests produce an experimental database on complex natural circulation flow between containment compartments for a wide range of geometrical and thermal-hydraulic parameters

Overview of proposed series (1/2)

n		C _n	C _n *n _{Pn} (PANDA)
	Separate effects/flow obstruction		
1)	Low momentum horizontal (or vertical) with vertical (or horizontal) flow obstruction	1	C ₁ *n _{P1}
2)	Two-phase flashing jets (horizontal and/or vertical)	2	C2*n _{P2}
	Safety components		
	Safety component/flow obstruction		
3)	Heat source with vertical (or horizontal) flow obstruction	1	C ₃ *n _{P3}
	Safety component interactions		
4)	Two Heat sources with and without cooler	2	$C_4 * n_{P4}$
5)	Heat sources with and heat sink (cooler)	2	C₅*n _{P5}
6)	Spray and heat source	2	C ₆ *n _{P6}
7)	Spray and containment cooler	2	$C_7 * n_{P7}$

Overview of proposed series (2/2)

	Systems		
	BWR systems		
8)	Thermal stratification in pools	2	C ₈ *n _{P8}
9)	Cooler and spray, Drywell to Wetwell venting, and VB opening	3	C ₉ *n _{P9}
10)	Primary + containment	4	C ₁₀ *n _{P10}
	PWR systems		
11)	Opening of foil and dampers	4	C ₁₁ *n _{P11}
12)	Opening of foil and dampers + spray	5	C ₁₂ *n _{P12}
13)	Opening of foil and dampers + spray + heat source		C ₁₃ *n _{P13}
14)	Opening of foil and dampers+ 2 heat sources	5	C ₁₄ *n _{P14}
15)	Opening of foil and dampers +spray + 2 heat sources	5	C ₁₅ *n _{P15}
			$\sum_{n=1}^{15} C_n \bullet n_{pn} \le 32$

Recommendations for code validation

For the sake of identifying the tests most suitable for their validation, it is useful to divide the codes in five categories:

 A: Lumped-parameter containment codes (e.g., MELCOR, ASTEC)

B: System codes (e.g., TRACE, MELCOR, CATHARE, MARS)

 C: Lumped-parameter containment and integral codes used on a 3-D mesh (e.g., COCOSYS, ASTEC)

D: System and Containment codes with
3D capabilities (e.g., GOTHIC,
GASFLOW, TONUS, MARS)

E: General purpose (commercial) CFD codes

EXT: extended version, i.e. modification is needed

n	A	В	C	D	E
1)				+	STD
2)				+	STD and EXT
3)				+	STD
4)				+	STD
5)			+	+	STD
6)	+	+	+	+	EXT
7)		+	+	+	EXT
8)		+	+	+	STD and EXT
9)	+	+	+	+	EXT(*)
10)	+(*)	+	+(*)	+(*)	EXT(*)
11)	+	+	+	+	
12)	+	+	+	+	
13)	+	+	+	+	
14)	+	+	+	+	
15)	+	+	+	+	

* Coupling with a system code is required

- The OECD/NEA/SETH-2 project has been carried out with the support of 9 countries to generate an experimental data base on
 LWR containment phenomena for safety issues
- The PANDA investigation addressed gas stratification and stratification break-up by heat and mass source as well as consequence of activation of safety systems
- The interpretation of the PANDA test results is still on going
- Analytical activities accompanied the SETH-2 projects and others are on going in view of an OECD/NEA workshop and benchmark, which will be held in Paris in September 2011
- Needs identified within and beyond the SETH-2 project are currently investigated in the EU-Russian ERCOSAM-SAMARA project and the proposed SETH-2 follow-up (EDARS project)