

MELCOR 1.8.6 Thermal Hydraulic and Iodine Release Calculations for a Small LOCA Initiated Severe Accident with Accident Mitigation Measures

Gábor L. Horváth, NUBIKI,Budapest HorvathLG@nubiki.hu

Nuclear Safety Research Institute, Budapest 1/25

Contents

- Full circuit model for VVER-440/213 with external vessel cooling and filtered vent
- Full circuit model TH results
- Stand alone VVER-440/213 containment model
- Stand alone containment model iodine results
- Conclusions
- Problems in MELCOR 1.8.6 IPM

Accident conditions for dominating PSA-2 case: PDS-05C

Initiating event	SBLOCA d=11mm	
ECCS	No	
Cont. Init. State	Intact	
Spray	No	
Sec. Side depressurisation	Yes	
Sec. Side FW	No	
Prim. Side depressurisation	Yes	
Early cont failure	No	
Ex-vessel cooling	Yes	
Filtered vent	Yes	
Late phase cont. Failure	No	

Plant solution: External Vessel Cooling

Nuclear Safety Research Institute, Budapest 4/25

Detailed Full Circuit model: External Vessel Cooling

Nuclear Safety Research Institute, Budapest 5/25

Nuclear Safety Research Institute, Budapest 6/25

Cavity flooding: Draining the pressure suppression pool water

Nuclear Safety Research Institute, Budapest 7/25

VVER-440 Simplified Stand Alone Containment: Sources: Primary circ + Ex-vessel cooling + BC drain+Fvent

Nuclear Safety Research Institute, Budapest

Filtered vent model for VVER-440/213 Stand Alone Containment

Nuclear Safety Research Institute, Budapest 9/25

External reactor vessel cooling: Heat balance details

Nuclear Safety Research Institute, Budapest 10/25

NUB

^{11/25}

External Reactor Vessel Cooling: Heat balance - Conclusions

Heat removed from RPV:

- early stages: Vessel wall dominates
- late stages: Lower Head dominates
- Very late stages: Vessel wall and LH are similar

Unresolved:

- Presence of FOCUSING EFFECT of molten metallic layer on RPV wall
- •Effect of crust separating the molten metallic layer from the RPV wall

Mid term Containment TH with Ext. Vessel cooling and FVent in Stand Alone Containment – Small LLOCA d=11mm

Limiting case:

- No Alkalising agent added to Sump water
- Water limited to Bubbler
 Condenser (BC) amount

Thermal hydraulic sources from Full Circuit Model:

- Pipebreak blowdown d=11mm
- PRV relief valve discharge
- SGbox-Cavity balance aft. Cavity flooding

Model verification:

Full circuit and Stand Alone Containment Model Calculated Pressures and Temperatures were very similar

Nuclear Safety Research Institute, Budapest 13/25

Nuclear Safety Research Institute, Budapest 14/25

Nuclear Safety Research Institute, Budapest 15/25

Mid term Containment TH with Ext. Vessel cooling and FVent in Stand Alone Containment – Small LLOCA d=11mm : Leak rates

Nuclear Safety Research Institute, Budapest 17/25

Mid term Containment I-131 Release with External Vessel cooling and FVent in Stand Alone Containment – Small LLOCA d=11mm

•Corrected I-131 distribution: **Decay=10days MELCOR: 2** CVs only calculated = 2.8-times **MELCOR** mass balance errors: 8% (only!)

Volatile I-131				
Room	I-131 TBq	Phase		
Oper.Rooms	172	Vapor in Gas		
Environment	216	Vapor in Gas		
Rest of containment	3530	Bound		

Aerosol I-131 (in CsI)				
Room	I-131 TBq	Phase		
Oper.Rooms	4301	Deposited		
Environment	909	Vapor in Gas		
Rest of containment	56342	Liquid		

Only BC	Deposited in the pool I-131 (in CsI)		
water supply!	Room	I-131 TBq	Phase
	Sump	472431	MI (Bound)

Nuclear Safety Research Institute, Budapest 19/25

Long term Containment TH with Ext. Vessel cooling and FVent in Stand Alone Containment – Small LLOCA d=11mm : Pressures

NUB

Nuclear Safety Research Institute, Budapest

20/25

Nuclear Safety Research Institute, Budapest

21/25

NUB

Nuclear Safety Research Institute, Budapest 22/25

Small LLOCA d=11mm, Stand Alone Containment, No Alkalizing

Nuclear Safety Research Institute, Budapest 23/25

Small LLOCA d=11mm, Stand Alone Containment, No Alkalizing

Long term Containment I-131 release with External Vessel Cooling and FVent in Stand Alone Containment – Small LLOCA d=11mm: Summary

Environment after 3-25 days Aerosol I-131 ceases after 3 days

For relatively short lived isotopes a single release number for volatile I-131 is not informative

Release can be described by a rate:

- 10-20 TBq/d during 10-20 days
- 5-7 TBq/d after 23 days

MELCOR 1.8.6 In Vessel Retention and IPM model: Problems

In-Vessel Retention

- Optimum No of axial levels in LP/LH for FOCUSING EFFECT
- *Melting of LH nodes? Is it calculated? How to plot?*

IPM

- Max 2 control volumes with IPM can be activated
- Mass balance error is between 8-100% (depends on sequence)
- NRC questions the validity of the IPM model

However

- IPM reproduced the Phebus FPT-1 test well
- The plant calculated results seems to be reasonable (although there is nothing to compare with)

Nuclear Safety Research Institute, Budapest 26/25