

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Bernd Jäckel

Modelling of Fukushima Block 4 Spent Fuel Pool using MELCOR 1.8.6 (SFP version)

- Power: 2381 MW_{th}
- Shut down: November 30th 2010
- Whole Core discharged into Spent Fuel Pool
- Decay Heat at March 11th: 2.9 MW (ANS 0.125% at 10⁷s)
- Number of Fuel Elements 1331 inclusive 548 of core
- Additional 1.5 cores old fuel
- Decay Heat guess 2MW (ANS 0.06% at 10⁸s)
 Volume of Pool: 1425 m³
- Starting conditions: Pool full, 30° C

Combustion after 4 days

Upper reactor building structures destroyed

2 fires observed after combustion

Release of fission products possible

Input deck developed from for generic spent fuel pool (Ginna NUREG/CR-0649) Available data from Fukushima I Block 4 used Pool geometry Axial and radial power distribution unknown 10 axial nodes, 5 radial nodes Nuclide inventory unknown

Burnup history unknown

Assumptions of heat load

Mass distribution taken from nuclide card (Karlsruhe)

Position of N/Z values from fission products taken from Bethe-Weizäcker formula (Minimum Potential Energy)

Neutron evaporation of fission products calculated from equal temperature assumption in fission products

Number of fissions per second calculated for 200 MeV energy release per fission for a 1 GW_{th} reactor

Energy release of fission products from NDS

PAUL SCHERRER INSTITUT

Fission products and Trans Uranium products

3rd EMUG Meeting, Bologna

11-12 April 2010

Axial Temperature Distribution

3rd EMUG Meeting, Bologna

11-12 April 2010

Caesium Release

Iodine (127 and 129) Release

The observed explosion (due to generated H_2 ?) can only be explained with a massive loss of coolant from the spent fuel pool, but then massive release of radioactivity should be observed (Cs-137 but no I-131).

or

Was the explosion due to flammable vapour (diesel fuel) under the conditions of about 100° C in the upper reactor building?

or

Is there a possibility of sufficient H₂ formation from radiolysis to drive a deflagration?

Thank you for your attention

