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OECD THAI HM2 Test

� HM test series objectives
• Investigation of transferability of the experimental 

results performed with simulator – helium on hydrogen 
cases

• Phenomenological objective of the HM tests was to 
investigate conditions for the hydrogen rich cloud 
erosion by steam and break up a light gas stratification

� HM2 test conduct 
• Filling of facility by nitrogen
• Hydrogen injection – formation of light gas cloud
• Steam injection

• Steam plum stagnation inside of cylindrical structure
• Erosion of light gas cloud – natural circulation
• Atmosphere homogenization
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OECD THAI HM2 Test

� Main Phases
• Time < 0 s � Filling with nitrogen

• 0 – 4200 s � H2 injection

• 4320 – 6820 s � Steam injection – cloud erosion

• Time > 6820 s � Steam inj. - Atm. homogenization

(2)
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MELCOR Model Development

� Overview of improved (Open) model (comp. with original (Blind) one)

� Only for MELCOR 1.8.6 due to absence of Film tracking networks
• Too complicated system of HSs

� Modification of parameter XMTFCi - enhanced scaling constant of 
mass transfer in the condensation correlation - HSnnnnn400 (9)
• Inner surface of inner cylindrical structure – resulted in possibility to 

model stagnation phase and agreement of pressure evolution in this phase
• Inner surface of TTV – agreement of pressure evolution in phase of 

natural convection

� New screen for ATLAS prepared
� Model was converted to MELCOR 2.1 – possibility of FT and SPR
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MELCOR Model Development

Blind

Open

Comparison of Nodalizations
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Radial Discretisation
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� Radial discretisation
• Blind simulation

• Levels 03 – 14 (8 azimuthal nodes)
• Open simulation

• Levels 03 – 09 (8 azimuthal nodes)
• Levels 10 – 22 simplified periphery (4 azimuthal nodes instead of 8 in lower part)

� Ratio of flow areas of inside volume of cylindrical structure
• 52.5 % to 47.5 % (R 0.500 m)
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Modification of parameter XMTFCi
� Modification of parameter 

XMTFCi – values used in final 
simulation

• XMTFCL = 2.00

• XMTFCL = 3.02

• XMTFCL = 4.00

• XMTFCR = 5.00

MELCOR Model – Open Simul.
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MELCOR 1.8.6 Final Simulation

� Comparison of        Blind Open

H2 Concentration – End of Injection
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� Significant 
improvement 
of Open 
simulation 
in comparison 
with Blind 
simulation

• Duration of 
stagnation 
phase

• Timing of 
cloud 
dissolution

Pressure and H2 Concentration
MELCOR 1.8.6 Final Simulation
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M1.8.6 to M2.1 Comparison

� Practically 
identical 
results of 
M186 and 
M2.1 with 
identical 
inputs

• Results of 
simulation 
with M186 
are 
visualized 
using 
ATLAS

Pressure and H2 Concentration
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M186 and M2.1 Simulations

� Observations from input 
conversion

• HSs in M2.1 input have to be in order 
of condensate drainage (starting 
from top to bottom of drainage HS 
chain)

• Each of HSs has to have a definition 
of drainage, including the last one 
which is drained into pool of 
associated CV

� Cases compared
• M186noFT– no film tracking model + 

no spraying by condensate
• M21noFT – no film tracking model + 

no spraying by condensate
• M21yFT – film tracking model + no 

spraying by condensate
• M21yFTSPR – film tracking model + 

spraying by condensate

� Very similar results of all 
cases

• All cases have identical definition of 
XMTFCi parameters

Impact of FT and SPR (1)
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M186 and M2.1 Simulations

� Cases compared
• M186noFT– no film tracking model 

+ no spraying by condensate
• M21noFT – no film tracking model + 

no spraying by condensate
• M21yFT – film tracking model + no 

spraying by condensate
• M21yFTSPR – film tracking model + 

spraying by condensate

� Very similar results of all cases
• Neglect of FT and SPR definition in 

M186 did not influenced predicted 
results significantly 

• Confirmation of assumption from 
blind simulation

• Practically identical results of 
M186noFT and M21noFT

• Spraying of ATM by condensate 
has negligible impact

• Slightly higher pressure, probably 
due to different ATM flow 
pattern (ATLAS cannot be applied 
for post-processing in M2.1)

• Film tracking seems be a little more 
important in this exercise

Impact of FP and SPR (2)
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M186 Simulations

� Very similar results of all 
cases

• All cases have identical definition 
of XMTFCi parameters

• What is effect of RN Package?

� Cases compared (all M186)
• noRNyX – noRN+DCH + XMTFCi
• noRNnoX – noRN+DCH + noXMTFCi 
• yRNyX – RN+DCH + XMTFCi
• yRNnoX – RN+DCH + noXMTFCi

� Results differ mainly based on 
application of XMTFCi

• Neglectable impact of RN + DCH 
application to steam mass in TTV

• Some impact on fog mass, but no 
influence of pressure

• It only influence distribution of 
condensate among aerosols (fog) 
and on wall (HS)

Impact of RN Package 
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M186 Simulations
Impact of Max. Fog Density 

� ISP-47 test included 
measurement of fog density

• Max measured value < 40g/m3, but M 
default is 100g/m3

• What is effect of FD?

� Cases compared (all M186)
• Open-XMT – 100g/m3 + XMTFCi
• Open-noXMT – 100g/m3 + noXMTFCi 
• FD-XMT – 30g/m3 + XMTFCi
• FD-noXMT – 30g/m3 + noXMTFCi

� Results differ mainly during 
cloud erosion phase

• Fog density limit influence total 
density of ATM � influence of 
hydrostatic head (steam jet has 
greater buoyant forces)

• Lower FD limit results in lighter ATM 
� more intensive penetration of 
buoyant plume into H2 rich cloud 

• Earlier cloud dissolution

• Comparable impact of XMTFCi and 
FD on timing of cloud dissolution, but 
not on pressure
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M186 Simulations
Impact of Re Limits in Film on HS 

� SC4253 (5) and (6) define limits of Re 
for film on HS

• Inconsistency between literature and UG 
found by T. Sevon (VTT) – see contribution 
to CSARP 2010
SC4253(5) new value 30.0
SC4253(6) new value 1800.0

� Cases compared (all M186)
• Open-XMT – final simulation with XMTFCi
• Open-noXMT-SC4253 – noXMTFCi + 

modified SC4253
• Open-noXMT-SC4253-CLNi – noXMTFCi + 

modified SC4253 + modified charact. 
dimensions of HS (inner surfaces)

• RN-FD-noXMT-SC4253-CLNi – RN pack. + 
reduced fog density + noXMTFCi + modified 
SC4253 + modified charact. dimensions of 
HS (inner surfaces)

� Results differ mainly during cloud 
erosion phase

• Cases 2 and 3 has high mass of steam and 
fog � high pressure and too slow cloud 
erosion

• Case 4 has high mass of steam but low fog 
and case 1 has low steam and high fog 
�correct timing of cloud erosion
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Summary and Conclusions

� Application of MELCOR confirmed possibility to predict THAI HM2 test 
correctly if
• Appropriate nodalization scheme used to model

• Hydrogen stratification – axial discretisation very important
• Hydrogen cloud erosion by steam

• Knowledge of facility, experimental conditions, and code
• Need to enhance steam condensation for successful prediction of pressure evolution 

and flow regimes in facility
• Under laminar or transition natural convection conditions

• Modeling of H2 and steam jet CVs seems to be needed, although its replacement by 
movement source location predicted relatively acceptable hydrogen distribution, but 
it results in temporary deviations

• Immediate start of hydrogen presence in case with moved source location vers. delayed 
hydrogen presence in case with jet CVs

• Model with jet CVs predicted better agreement in 
• H2 distribution in lower levels and timing of phases

� Identification of condensate spraying model malfunction in M186 YT
• BUG Report No. 172 (April 2008) – solved in M186 YU
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End of Presentation


