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[ ISP-49 MELCOR Application \
NRI Participation

Main objectives
Validation of code against experiments

User experience extension to H2
deflagration topic

ISP-49 - two kinds of experiments

THATI Facility - slow deflagration
* Operated by Becker Technology (Germany)

* Main interest of NRI (participation in OECD
THAT Project)

ENACCEF Facility - flame front
acceleration
* Operated by CNRS (France)

* Minor interest, because MELCOR has no
models for Flame Acceleration
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/ ISP-49 MELCOR Application \
Slow Hydrogen Deflagration

m:
DNs0o 1% LN200

OECD ISP-49 THATI Tests

No internals (only measurement)
Deflagration ignited in bottom
Homogenized atmosphere

HD-2R Test - open calculation

* H2 concentration 8.0%vol. without
steam; temp. 25° C; press. 1.5 bar

HD-22 Test - blind and post-blind calc.

* H2 concentration 10.0%vol. with 25%vol.
steam; temp. 90° C; press. 1.5 bar
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NRI MELCOR Model
Hydrogen Deflagration Tests

New input model developed for
MELCOR code for OECD-THAI HD
test simulation

13 Axial levels, 7 CVs in layer

(79+4 CVs, 204 FLs, and 143 HSs)
Identification of important error in
burn propagation among CVs

OECD THAI data cannot be shared

outside of project members = Baby

Case input model developed for

demonstration of error to SNL
developers
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[ Flame Propagation \
Standard MELCOR 1.8.6 YT

End of burn in bottom CV Next time step
Stars indicate instant burns

_ L Identification of
important error in burn

propagation among CVs
OECD THAI data
cannot be shared
outside of project
members = Baby Case
input model developed
for demonstration of
error to SNL
developers

,,f

H2 Mole Fraction [-]

0 00E-02
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Baby Case
Nodalization Schemes

Baby case

oD 130

Pipeline with ID 100 mm
length 10,200 mm and
wall thickness 15 mm

First part (200 mm) as

space with igniter
Burning pipe with igniter
space

End of deflagration should

be similar in both models

2 CVs model

Deflagration propagates
from %VOZO Tpo C}\)/C%O

6 CVs model
Deflagration has to I
ropagate consequent
?rorﬁw %VOZO to C(k/051,y
CV052 ..

ID 100 g g

10 000

Cv050

HS05001

CV052 CV053 CV054 CV055

HS02001| HS05101 HS05201 HS05301 HS05401 HS05501
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Baby Case Results
Standard MELCOR 1.8.6 YT

2 CVs model
Deflagration initiated at 1= 0.0 s
Propagation from CV020 to CV0O50 at t; = 0.0155 s
End of deflagrationin CVO50 at 12 = 1573 s

6 CVs model
Deflagration initiated at 1= 0.0 s

But at time t1 = 0.0155 s deflagration propagated into all remaining CVs
simultaneously < error in propagation algorithm

End of deflagration in all CVO5i at 12 = 0.326 s

CV020 | c¢vo51 CV052 CV053 CV054 CV055
00s<t<t
HS02001 HS05101 HS05201 HS05301 HS05401 HS05501
CV051 CV052 CV053 CV054 CV055
-1 * —> * —1— *
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Baby Case Results

Improvement of MELCOR 1.8.6

NRT debugging of this error resulted in identification of correction needs in two
routines (burprp.f and burrun.f)
Deflagration initiated at 1= 0.0 s

Standard M186

Propagation
Propagation
Propagation
Propagation
Propagation
End in CV055

into
into
into
into
into

CVv051
Cv052
CVv053
Cv054
CVO055

e e e

.59547E-02
.59547E-02
.59547E-02
.59547E-02
.59547E-02
3.

36495E-01

w n u n wu u

End time in 2CVs model t, = 1573 s
Improved M186

Propagation
Propagation
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Propagation
End in CVO05
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Observations and modifications reported to SNL developers including Baby Case
inputs (BUG Report 287)

Added refilling of burning tube with hydrogen and oxygen and initiation of subsequent
deflagration = second set of deflagrations again propagated into all CVs simultaneously,

one more routine modified (burcom.f) fo correct subsequent deflagrations
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Flame Propagation
Standard MELCOR

NRI performed set of other tests /

Testing of older version (MELCOR1.8.5) against
baby case with additional source of hydrogen
(SNL modification)

* MELGEN failed due to incompleteness of hydrogen
source definition

* MELGEN YT_1010 and YU_2798 do not check
existence of appropriate external energy source
related to external mass source as described on page
CVH-UG-26 (full description in BUG339 report from
end of February 2009)

®* MELCOR 1.8.6 (and also 2.1) corrected to fulfill
request on existence of external energy source for
each of external mass source

* Tt is solved in subversion 3037 of M186
and 1191 of M2.1

Additional testing of propagation with standard Hz mole Fraction [-]
release of MELCOR 1.8.6 YT_1010 B boE-02

* Zero hydrogen concentration in one (or more) of CVs 6o
on propagation chain of CVs preserve remaining CVs
from immediate deflagration propagation —

* Important for older Cntn analyses ~0.00E+00
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[ Flame Propagation \
Improved MELCOR 1.8.6

End of burn in bottom CV Next time steps
Stars indicate instant burns

— —

H2 Mole Fraction [-]
9 00E-02

% I2.00E02
0. 0DE+00
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/ Modeling of Deflagration \

Problematic Topics

Some problematic topics identified in
MELCOR application to THAIL HD-2R test

Significantly faster flame propagation
* Flame speed determination
Remaining unburnt hydrogen

* Effect of lumped parameter approach to combustion
completeness

Rate of hydrogen consumed from burning

\. _/
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/ Modeling of Deflagration \
Flame Speed Determination

MELCOR uses only one correlation for all flame directions
(upward, downward, and horizontal)

NRT prepared updated definition of SC2200 for application
within ISP-49
Based on OECD THAT HD tests
* Proprietary source
Relevant only for upward flame propagation
* It cannot be recommended for plant simulations

It played important role in HD-22 test simulation, where under-
predicted flame velocity resulted in absence of deflagration in
central nodes of upper half of vessel

* Corrected with realistic flame velocity < impact of ATM overflow

\. _/
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[ Modeling of Deflagration \
Lumped Parameter Approach (1)

Full combustion completeness is defined = H2 mole fraction is 0.0 at the end of
deflagration in lower CV

Continuation of deflagration in adjacent CV results in ATM pressurization in

recently burning CV and its expansion
= overflow into all adjacent CVs / l\ / l\

9 .0E-02
—8.0E-02

6.0E-02 T
- )G .
2.0E-02

Mlefﬁﬁ;&M
Time = 2.465 s Time = 2.485 s

) J. Duspiva 3rd EMUG 14
SIJ.JVS' Bologna, Ttaly, April 11-12, 2011
S




[ Modeling of Deflagration \
Lumped Parameter Approach (2)

Full combustion completeness is defined = H2 mole fraction is 0.0 at the end of
deflagration in lower CV

Continuation of deflagration in adjacent CV results in ATM pressurization in
recently burning CV and its expansion
= overflow into all adjacent CVs

MELCOR code does not distinguish Simplified scheme MELCOR (LP)
atmosphere composition in front approach
and behind flame front position -
ATM is fully homogeneous i f
Due to instant CombUSTion, ATM 7 un(—:rugsrgfumlzzgre [ Volumetric
flowing into other CVs is e L
H2 lean in comparison with CV in o m safﬁy purnt
front of flame front propagation % | (expanding) _:\ mixture)
(here above) = decrease of H2 | |
mole fraction Y v

H2 rich in comparison with CV
behind flame front (here below) =

increase of H2 content, which
K remains unburnt /
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/ Modeling of Deflagration \
Lumped Parameter Approach (3)

Is it possible to find any user solution?
MELCOR has no capability to filter one or more ATM

components in flow paths = No / |\

* More over MELCOR does not know orientation of flame
movement and position of sides - in front and behind flame
front (volumetric combustion approach)

MELCOR has capability of external mass and energy sources
and sinks = Possible user solution

MELCOR has capability to define igniter in each of cell =
Possible user solution (necessary modification of some
model parameters - XH2IGY, XH2CC, and XH2PDN)

Is complicated nodalization best approach for
MELCOR?
More variants of nodalization prepared and tested
Some models had also subversions oE 02
Results processing focused on - timing of flame front [60E02
2 0E-02

position, pressure evolution, and unburnt mass of
K hydrogen /
—0.0E+00
H2 Mole Fraction [-]
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Modeling of Deflagration
Hydrogen Removal Rate

Duration of deflagration is calculated from characteristic dimension 4CVs Mode
(of control volume) and flame speed e b
Flame speed is calculated from concentrations at beginning of burn,  *** = ﬂ * g
but - D
Rate of hydrogen consumed from burning is calculated from current .o ™ .
concentrations in each time step and it is proceeded in whole volume e
Real burn is proportional to surface of flame front (spherical shape) N T
Deflagration is terminated after predicted duration (point 1) B o
Those effects occurred in all CVs and in all input models, but in this ™" e
case is very well visible P G =
oval Mass Rate —_
m/&é o1
h N AT
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AxL.04

Simulation of HD-2R Test

Impact of Nodalization

5 nodalizations prepared

Specific user approaches defined
S&S - H2 sinks defined behind flame front and appropriate sources in front of it
Ign - igniters in CV behind flame front
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Simulation of HD-2R Test
Impact of Nodalization

(2)

~

6.0E+05

Best agreement between simulation and measured pressure history
Maximum pressure

The simplest case 4CVs (usual approach to Cntn) slightly overestimated pressure
maximum and significantly earlier onset of pressure increase - immediate
deflagration in big volume

Cases with additional igniters

THAI HD-2R Pressure Evolution

and

07

slightly overestimated
pressure maximum, but they predict correctly combustion completness

* Probably due to underestimation of heat losses from flame front to walls (absence of
radiation)

THAI HD-2R Unburnt Mass of Hydrogen
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Summary and Conclusions

Validation of MELCOR code against deflagration tests resulted in
Code correction - flame propagation algorithm

Observations concerning problems with more detail nodalizations

* LP approach effect - redistribution of H2 to already burnt CVs

* Flame speed prediction using default correlation

* Rate of hydrogen removal during deflagration

* Code has no modeling capability for flame acceleration
It is not possible to suppose any improvement without important and
principal changes of source code and BUR package model, but

Code is flexible

* It allows to define more realistic flame speed profile via. CF (if it is known)
* It allows to use some user approaches (if user knows results)

\. _/
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Summary and Conclusions

(2)

\_

Generally H2 deflagration is important, but deflagration itself is very fast
process and its very detail modeling within whole plant simulation seems
hot be necessary
But LP effect could influence prediction of H2 distribution in detail Cntn
nodalizations, if any deflagration is predicted
Integral application of MELCOR code to source term estimation in
scenario with hydrogen deflagration is possible
Duration of deflagration is very short in comparison with whole scenario

Whole plant input models include usually coarse nodalization (more rooms are
merged into one CV or one CV per room) - case 4CVs showed relatively good
agreement in maximum pressure
H2 distribution requests very detailed nodalization, but it results in
absolutely wrong prediction of deflagration

Study on impact of nodalization is needed
MELCOR is not suitable code for detailed study of H2 combustion /
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Conclusions on Cntn Modelling

(1)

User has to anticipate convection loops in containment, mainly in

large open space (reactor hall) and to develop nodalization wu’rh
taking of such loops into account = =

Only one CV for reactor hall can't simulate ="\ |
any circulation ﬁ v - T
Recommendation on FL definition between ) Ls. = }
virtually subdivided big space m i T
Prepared by Dr. Sonnenkalb (GRS) based on ]D@%\ E %‘
comparison of MELCOR to COCOSYS CHUE ST TS

* Presentation at the 1st EMUG Meeting 12/2008
* FLARA reduced to max 20 m2, FLLEN max 10 m

* Inmy THAI model I used real values of FLARA, FLLEN, SAREA, and
K SLEN, but in Cntn I used reduced values for SLEN (0.1 m)

_/
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Conclusions on Cntn Modelling

(2)

4 + E
4 "

T T

T

OECD THAI Project - Benchmark on HM2 test

Recommendation to model CVs and FLs of upward
directed plumes

* Flow is directed with pressure difference, which depends
on hydrostatic head and it is function of atmosphere
density

If light gas enters to big volume, it is immediately

homogenized with content of this CV, but

If upward plume is simulated with independent set of CVs,

pressure difference is kept and buoyant force is predicted

correctly

Problematic topic - angle depends on plume and ATM

composition, but c N
* They vary during plant simulations, but nodalization is

K fixed uy
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Conclusions on Cntn Modelling

H2 distribution requests very detailed nodalization,
but it results in absolutely wrong prediction of B A |
deflagration and vice versa - coarse nodalization

[

=
hr ALY ]
Z 5 Eas,

predicts relatively good response of deflagration, but
absolutely wrong H2 distribution

Testing of MELCOR on THATI HR tests with detailed
nodalization confirmed correct modelling (data are
proprietary)

MELCOR can be used for Cntn simulation with robust

hydrogen removal system based on PAR with very
detailed Cntn nodalization

* Robust means - no hydrogen deflagration
Plant simulations on H2 distribution and hydrogen
removal system with stand alone Cntn
Elimination of primary system prediction feedback
Study on separation performed with MELCOR 1.8.5
* Contribution to MCAP 2005

—— * Should be repeated with M186 (and M2.1 ?), then L
N presented (next EMUG?) w
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End of Presentation
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Thank You ter Your Attention
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