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Motivation 

� Presentation [dsp1] at 5th International QUENCH Workshop 
(1999) compared simulation of MELCOR 1.8.3 and ICARE2 
V2-Mod2.3 simulation for reflooding scenario of VVER-1000

� Several simulations of Quench tests performed with 
MELCOR (1.8.5 and 1.8.6) and also with ICARE2
• Quench-01 (M5, M6, I2), Quench-03 (M5, I2), Quench-06 (M5), 

Quench-07 (M6), and Quench-11 (M6)

� Interest to see progress in simulation of reflooding scenario 
with MELCOR code during last 10 years

[dsp1] J. Duspiva: VVER-1000 Core Quenching Analyses with MELCOR and ICARE Codes, 5th International 
QUENCH Workshop, Karlsruhe, October 19-21, 1999
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Comparison of Codes
MELCOR 1.8.3 to MELCOR 1.8.6

� MELCOR 1.8.3 was released in 1994 and MELCOR 1.8.6 in 2006
• Version of MELCOR 1.8.6 YU_2911 used in the simulations was released in 

August 2009
� New model capabilities in MELCOR 1.8.6 in comparison with MELCOR 

1.8.3
• Reflooding model 

• Distinguished wetted and non-wetted surface temperature of components within 
individual COR cell

• Position of quench front on surface of structures (mainly CL)
• Distinguished supporting (core support plate) and non-supporting structures 

(guide tubes and control rods)
• Core structure loading and failure modeling
• New shroud and core former components in COR package
• Melting of boundary HS
• Molten pool models – in core and in lower plenum, oxidic and metallic
• Lower head failure modeling
• Control rod degradation improved for both SIC and B4C, and others

� Progress in computer power resulted in possibility to use 
significantly more detailed nodalization
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Comparison of nodalization – three cases compared

Figures prepared only for RPV, because this part is the most interesting for reflooding topic

Comparison of Models
MELCOR 1.8.3 to MELCOR 1.8.6
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Reactor Pressure Vessel Nodalization – RPV Figure, COR, CVH/FL Packages

Comparison of Models
MELCOR 1.8.3 to MELCOR 1.8.6 (2)

MELCOR1.8.3

�

MELCOR1.8.6                           MELCOR1.8.6

� �

standard                              recommended
approach                                        best

practise
detailed CV/FL
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Reactor Pressure Vessel Nodalization – COR, CVH/FL Packages

Comparison of Models
MELCOR 1.8.3 to MELCOR 1.8.6 (3)

MELCOR1.8.3

�

MELCOR1.8.6                           MELCOR1.8.6

� �

standard                              recommended
approach                                        best

practise
detailed CV/FL



J. Duspiva 2nd EMUG Meeting                                                          
Prague, Czech Republic, March 1-2, 2010

8

Reactor Pressure Vessel Nodalization – COR, CVH/FL Packages

Comparison of Models
MELCOR 1.8.3 to MELCOR 1.8.6 (4)

MELCOR1.8.3

�

MELCOR1.8.6                           MELCOR1.8.6

� �

standard                              recommended
approach                                        best

practise
detailed CV/FL
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Comparison of Models
MELCOR 1.8.3 to MELCOR 1.8.6 (5)

MELCOR 1.8.3 COR Model for VVER-1000
• PWR type 
• 5 Rings 

• 4 rings with fuel and 
• 5th ring - core baffle modelled with 

other str.
• Core barrel modelled as axial boundary 

HS
• Only 1 CV covers whole core
• Spacer grids modelled as part of cladding
• Control rods modelled as other str.
• Supporting or non-supporting feature 

distinguished only with parameter ISUP 
(input row CORZij02)

• This option is defined for all 
components in axial level

• Lower plenum internals modelled as OS
• LHF – temperature criterion on outer 

surface
• User model

MELCOR 1.8.6 COR Model for VVER-1000
• PWR type
• 7 Rings

• 6 rings with fuel, but
• 6th ring splitted into channel (FU) and 

bypass with SH component (core baffle)
• 7th ring only in lower plenum

• 3 or 67 CVs cover whole core (incl. bypass)
• Spacer grids modelled as supporting 

structure with temperature condition of its 
failure

• User defined type with options
• Intact and debris

• Control rods modelled as NS
• Advanced model applied

• SH component modelled with “Fixed” option
• Available from M186 YT_1010 version

• Lower Plenum internal modelled as user 
defined SS

• LHF – zero dimensional model (LH has no 
insulation)
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Reflooding Scenario Definition
Large LOCA

� Initiating Event
• Large break LOCA on the surge line 

between a hot leg of the primary circuit 
and the pressurizer with equivalent 
diameter 200 mm 

� Subsequent events
• Loss of active emergency core cooling 

systems 
• Loss of two of four HAs (one of them 

supplying water into down comer and the 
second one into upper plenum)

� Interruption of accident progression
• Restoration of one train of the high-

pressure core cooling system in injection 
phase at the time 2200 s (system is 
connected into Cold Leg between MCP and 
RPV) – TCL-MAX about 1200 K

• Successfully switched to recirculation 
phase at the time 2450 s (heat exchanger 
is operating)

• Water mass flow rate of restored HPI is 
about 57 kg/s in both phases

• Temperature of HPI water is 60 °C in 
injection and from 35 to 38 °C during 
recirculation

� Timing of main events slightly different 
between MELCOR 1.8.3 and 1.8.6 simulations

• Start of HPI in injection phase changed to 
2100 s in MELCOR 1.8.6 simulation to keep 
identical timing of water injection into core 
at 2420 s
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Comparison of Results
Water Levels in Core

� Different boil off phase
• M183 – earlier starting 

of core uncovery with 
slower water level 
falling

� Reflooding initiated at 
same time – boundary 
condition of comparison

� Water level rise 
• M183 faster swollen 

level
• M183 slower collapsed 

level
� M6dc2 – slow rise in long 

term
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Comparison of Results
Swollen Water Levels in Core

� Different boil off phase
• M183 – earlier starting 

of core uncovery with 
slower water level 
falling

� Reflooding initiated at 
same time – boundary 
condition of comparison

� Water level rise 
• M183 faster swollen 

level
• M183 slower collapsed 

level
� M6dc2 – slow rise in long 

term

(2)
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Comparison of Results
Collapsed Water Levels in Core

� Different boil off phase
• M183 – earlier starting 

of core uncovery with 
slower water level 
falling

� Reflooding initiated at 
same time – boundary 
condition of comparison

� Water level rise 
• M183 faster swollen 

level
• M183 slower collapsed 

level
� M6dc2 – slow rise in long 

term

(3)
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Comparison of Results
Cladding Maximum Temperature

� Overall heat generation by 
fission and decay power 
identical

� Different treatment of energy 
transfer from COR to CV 

• Impact of version
• Impact of nodalization (core 

periphery and radial heat 
losses)

� Difference in heat generation 
by oxidation

� More intensive heat up in M186 
simulations is in accordance 
with ICARE2 [dsp1] or 
SCDAP/RELAP5 simulations 
[dsp2]

[dsp2] J. Duspiva: MELCOR1.8.5 and SCDAP/RELAP5 
Codes Validation and Revision of MAAP Models; 
Validation Exercises LBLOCA-M and LBLOCA-S, 
Report UJV 11970-T, September 2002 (in Czech)

(1)
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Comparison of Results
Cladding Maximum Temperature

� Water ingress into core 
starts at 2420 s (dot-dash 
vertical line)

� Very different maximum 
temperatures predicted

• M3PN  1801.7 K
• M6r3   2142.6 K
• M6dc2 1699.2 K

� That is consequence of 
different oxidation before 
reflooding onset

• M3PN  20.228 kg of H2
• M6r3   27.222 kg of H2
• M6dc2 12.578 kg of H2

(2)
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Comparison of Results
Hydrogen Generation

� The highest hydrogen 
generation during 
reflooding predicted in 
M6r3 case due to 
significantly higher 
temperature at reflooding 
onset

� M183 without reflooding 
model significantly 
underestimated hydrogen 
generation

• ICARE2 [dsp1] 80.75 kg
� Steam starvation condition 

indicated during beginning 
of reflooding 

• Short period in M183 a 
M6r3

• Longer time period in 
M6dc2 – long time in some 
nodes

ICARE2
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Comparison of Results
Temperatures in Core – Ring 1

� Different nodalization in M183 and M186
• Rings do not represents identical part of core

� Ring 1
• M6dc2 – molten pool is not cooled down and 

cladding temperature in node below it is slowly 
rising
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Comparison of Results
Temperatures in Core – Ring 2

� Different nodalization in M183 and M186
• Rings do not represents identical part of core

� Ring 2
• M6dc2 – molten pool is not cooled down and 

cladding temperature in node below it is slowly 
rising

• M6r3 – AxL22 collapsed at about 4500 s and 
debris cooled down
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Comparison of Results
Temperatures in Core – Ring 3

� Different nodalization in M183 and M186
• Rings do not represents identical part of core

� Ring 3
• M6dc2 – molten pool is not cooled down and 

cladding temperature in nodes below it are 
slowly rising, also radial relocation influences 
temperature evolution (change of trend from 
cooling to heat up)
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Comparison of Results
Temperatures in Core – Outermost Ring

� Different nodalization in M183 and M186
• Rings do not represents identical part of core

� Ring 4 in M183 and Ring 6 in M186
• M6dc2 and M6r3 – behavior influenced by 

radial relocation of hot debris
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Comparison of Results
Quench Front Position

� MELCOR with reflooding model calculates quench front position on surface of 
COR components – CL is the most important

• This output not available in MELCOR 1.8.3
• Earlier initiation of front falling in M6r3 case
• Molten pool in M6dc2 case is not fully cooled down 



J. Duspiva 2nd EMUG Meeting                                                          
Prague, Czech Republic, March 1-2, 2010

22

M186r3 Case Results
Bundle Configuration

� Time 2420 s – just before reflooding; 
� Control rod degradation started in hot spot

(1)
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M186r3 Case Results
Bundle Configuration

� Time 2520 s

� Upper part of fuel assemblies in R1 –R5 relocated 

(2)
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M186r3 Case Results
Bundle Configuration

� Time 2570 s

� Formation of debris bed in R1 –R5 relocated 

(3)
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M186r3 Case Results
Bundle Configuration

� Time 2620 s

� Formation of debris bed in R1 –R5 relocated 

(4)
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M186r3 Case Results
Bundle Configuration

� Time 2670 s

� Water at elevation of debris bed bottom 

(5)
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M186r3 Case Results
Bundle Configuration

� Time 2720 s

� Cooling of debris bed started 

(6)
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M186dc2 Case Results
Bundle Configuration

� Time 2420 s – just before reflooding 
� Control rod degradation started in hot spot (like in M6r3 case)

(1)
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M186dc2 Case Results
Bundle Configuration

� Time 2520 s

� Fuel rod relocation did not yet start

(2)



J. Duspiva 2nd EMUG Meeting                                                          
Prague, Czech Republic, March 1-2, 2010

30

M186dc2 Case Results
Bundle Configuration

� Time 2570 s

� Upper part of fuel assemblies in R1 –R5 relocated

(3)



J. Duspiva 2nd EMUG Meeting                                                          
Prague, Czech Republic, March 1-2, 2010

31

M186dc2 Case Results
Bundle Configuration

� Time 2620 s

� Formation of debris bed in center, water level rise more intensive in R6

(4)
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M186dc2 Case Results
Bundle Configuration

� Time 2670 s

� Formation of debris bed in center, water covers debris bed, void formation

(5)
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M186dc2 Case Results
Bundle Configuration

� Time 2720 s

� Debris bed in center remain hot with void cavity

(6)
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Comparison of Results
Final Bundle Configuration

� Time 9000 s – end of calculation 
M186r3                                                        M186dc2                                    M183

(2)

03
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07

08

09
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12

Fuel

Cladding Zr

Cladding ZrO2

Other Structure

Debris

Axial level

Ring 1 Ring 2 Ring 3 Ring 4

Fluid
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Summary, Conclusions

� Comparison of three simulations of reflooding scenario for VVER-
1000 reactor performed
• MELCOR 1.8.3 ([dsp1] 1999) with simple nodalization
• MELCOR 1.8.6 with standard plant approach
• MELCOR 1.8.6 with best practices to COR-CV-FL (very high CPU)

� Confirmation of too slow heat up rates during core uncovering in 
M183
• Originally compared with SFD codes ICARE2 and SCDAP/RELAP5, M186 

simulations in accordance

� Significantly higher hydrogen generation predicted in M186 in 
comparison with M183
• Good agreement between both M186 simulation for total mass of H2, but 

very different maximum generation rates
• Maximum peak rate below 0.8 kg/s in M6r3 and 0.5 kg/s in M6dc2 

(ICARE2 0.9 kg/s) – M6r3 generated more than 125 kg during reflooding, 
I2 only 30 kg
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Summary, Conclusions

� First two simulations showed possibility to terminate SA progression 
and cool down core with only one HPI system, but
• The most detailed simulation predicts non-cooled hot molten pool or 

debris bed
• Reflood mass flow rate is only a little above 1g/(s rod), which is 

understood as a minimum value for successful core reflooding if peak 
cladding temperature 
< 2200 K [heh] � but this case was with higher CL temp.

• Contradictory answers have to be understood as negative answer on 
coolability for this definition of scenario

• At least activation of system with higher mass rate or more trains of this low 
mass rate system necessary 

• Testing of more nodalizations is very important, because application of the only 
one input model could result in wrong conclusion due to selection of inadequate 
one

[heh] W. Hering, Ch. Homann: Degraded core reflood: Present understanding and impact on 
LWRs, Nuclear Engineering and Design 237 (2007) 2315-2321

(2)
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Summary, Conclusions

� Application of best practices for CRO-CV-FL had penalty in 
significantly higher CPU
• Application of this approach seems not be necessary for all scenarios

• Important for scenarios with counter-current flow in hot leg

� Modelling of spacer grids as SS seems be more realistic than 
approach with their modelling as part of cladding
• It enables to terminate relocation of large debris particles

(3)
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End of Presentation


