

PHEBUS FPT3 and MELCOR 1.8.6

Sensitivity Analysis Focusing on Core Degradation Using Available Data From PHEBUS FPT3

Felice de Rosa - <u>Marco Sangiorgi</u> ENEA MMS BOLOGNA

2nd EMUG meeting Prague 1-2 March 2010

Background

Concerning Severe Accidents, ENEA is active partner in:

- SARNET2 Project (Severe Accident Research Network of Excellence, 7th EURATOM Framework Programme).
- CSARP (Cooperative Severe Accident Research Programme) and MCAP (Melcor Code Assessment Programme).
- > **EMUG** (European Melcor Users' Group).
- BIC (Bundle), CACIC (Circuit and Containment), CCIC (Containment Chemistry) PHEBUS Interpretation Circles.
- OECD/CSNI/WGAMA (Working Group on Analysis and Management of Accidents).

Recent Works

- «Progress of ASTEC Code Validation on Circuit Thermal-hydraulics And Core Degradation», presented at the last ERMSAR meeting (SARNET European Review Meeting on Severe Accidents), held on 23-25 September 2008 at Nesseber (Bulgaria).
- «LFW-SG Accident Sequence in a PWR 900: Considerations Concerning Recent MELCOR 1.8.5 / 1.8.6 Calculations», presented at the 1st EMUG Meeting, held in Villigen, Switzerland on 15-16 December 2008.
- «Recent Enea Activities in The Field of Severe Accidents And Computer Code Calculations», presented at the CSARP Meeting, held in Bethesda, MA, on 15-17 September, 2009.

Relevance of PHEBUS FP

In terms of fission products, the Phebus-FP facility is scaled down by a factor 5000 relative to a <u>900-MWe PWR</u>: the scale factor uniformly applies to the initial bundle inventory, the circuit concentrations and the containment concentrations, so as to ensure that representative phenomena can be studied under typical concentrations.

General Description of PHEBUS FP

According to the statements reported in the previous slides, a good way to learn more about severe accidents is to refer to **PHEBUS FP** experiments.

The general objective of the Phebus FP programme is to investigate the main phenomena involved in postulated severe accidents that could occur in a Light Water Reactor (LWR). These accidents include:

- Irradiated-fuel degradation, with prototypic material, under steam-rich or steam-poor conditions.
- Fission product (FP), fuel, control rod and structure **material release** from the test bundle.
- Released material transport and deposition in the Reactor Coolant System.
- FP and aerosol **behaviour in the containment building**, with major attention to lodine.

In the ambit of the WP8.3 *"Bringing research results into reactor applications"* ENEA takes part in one of the proposed benchmarks using **ASTEC** and **MELCOR** codes and performing calculations taking account of **PHEBUS FPT3** test (work still in progress)

HERE IT IS AN ADVANCE OF THE WORK

FPT3 test device

Schematic of the FPT3 test device

Cross section details

CORE nodalization

CORE nodalization

Bundle axial nodalization

- 16 axial levels of which:
- 3 in the lower head (including Core Support Plate)
- 2 with no active fuel
- 2 with spacers

FPT3 Importance

- A strong difference between FPT3 and previous tests is the use of a B₄C control rod instead of a AgInCd control rod (Silver-Indium-Cadmium).
- It will be possible to properly test the MELCOR New Model for Release and Oxidation of B₄C Control Poison.

Degradation phase

Thanks for your attention!

