

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Bernd Jäckel

Influence of B₄C oxidation on transient behaviour at ACRR DF-4

- Introduction
- Modelling of ACRR DF-4
- Sensitivity studies
- Conclusions
- Outlook

PAUL	SCHE	R R E R	INSTITUT	
	-	[-	T	
_			L]

General Approach

- Plant analysis strategy is based on use of MELCOR as front line tool —MELCOR 1.8.5 has been used by PSI in applications
 - MELCOR 1.8.6 is being assessed for use as the production version
 - -improved models for late phase/in-vessel retention and CRP release
 - -MELCOR 2.1 is the code for future model development

-part of 2 tier strategy (System level, subsystem/component level)

- Activities have include plant application, support to experimental programmes, code assessment and model development
- Assessment activities were performed in the frame of international collaborations: SARNET, USNRC/CSARP, ISTC, ISTP, PHEBUS FP and QUENCH

ACRR DF-4 was conducted 1986 at Sandia National Laboratories ACRR: Annular Core Research Reactor DF-4: Damaged Fuel Experiment Nr. 4 0.5m Heated height: Diameter: ~8cm Nr. UO_2 fuel rods: 14 Mass UO₂: 4.13kg Mass zircaloy: 1.88kg Mass stainless steel: 570g Mass B_4C : 40g (max. Mass CO: 20g, H₂: 10g) SANDIA REPORT SAND93-1377 UC-610 Source: MELCOR 1.8.2 Assessment: The DF-4 BWR Damaged Fuel Experiment

ACRR DF-4

Control Volumes

- Sensitivity parameters:
- Available boron carbide fraction for oxidation (2%)
- Oxidation reaction threshold temperature (1500K)
- Reaction rate parameter (1.662E5 s-1)
- Start temperature for eutectic reaction between steel and B4C (1570K)
- Intact steel remaining 90%
- Time step and noding
- Sensitivity study on above parameters calculated all with MELCOR 1.8.5 RD
- Using different code versions for base case calculation (1.8.5 RD, 1.8.6, 2.1)

HYDROGEN GENERATION: BASE CASE

2nd EMUG Meeting, Prague

Available fraction of boron carbide for the oxidation with steam - effect on the mass of carbon gases and hydrogen

2%, 5%, 10%, 50%, 100%

AVAILABLE B₄C FRACTION - CO MASS

AVAILABLE B₄C FRACTION – H₂ MASS

2nd EMUG Meeting, Prague

Threshold temperature for oxidation of boron carbide - effect on the mass of carbon gases and hydrogen

1300K, **1500K**, 1700K

Additional change: 'Intact steel failure fraction' from 90% to 99% Reason: No effect could be observed with 90% case

OXIDATION THRESHOLD TEMPERATURE - CO MASS

Reaction Rate: $d(M/M0)/dt = A1 \exp(-A2/T)$

A1: 1.662E2, 1.662E3, 1.662E4, 1.662E5, 1.662E6 A2: 22647.2K

Additional change: available B₄C for oxidation 2% and 100%

2nd EMUG Meeting, Prague

PAUL SCHERRER INSTITUT

REACTION RATE (2% B₄C) - CO MASS

2nd EMUG Meeting, Prague

REACTION RATE (100% B₄C) - CO MASS

2nd EMUG Meeting, Prague

Start temperature for eutectic reaction between steel and B₄C - effect on carbon gas

1470K, 1520K, 1570K, 1620K

2nd EMUG Meeting, Prague

START TEMPERATURE OF EUTECTIC REACTION -CO MASS

Modeling different number of control volumes for experimental section

1CV, 3 CV's, 6 CV's, 12CV's

2nd EMUG Meeting, Prague

2nd EMUG Meeting, Prague

CONTROL VOLUME NODALIZATION

CONTROL VOLUME NODALIZATION

PAUL SCHERRER INSTITUT

CONTROL VOLUME NODALIZATION - 12 CV

Control volume nodalization - 12 CV

2nd EMUG Meeting, Prague

Using different code versions of MELCOR

1.8.5 RD, 1.8.6 YT, 1.8.6 YV, 2.1_668, 2.1_1576 (Two optimization levels)

2nd EMUG Meeting, Prague

Input deck preparation for the conversion to more recent MELCOR code versions

- For all following calculations:
- Changing B₄C modelling from OS to NS
- Switching off the eutectic model

Conversion of input deck for MELCOR 1.8.6

Converter failed \longrightarrow Changing input deck by hand

Conversion of input deck for MELCOR 2.1 Only minor changes by hand neccessary

CODE VERSION COMPARISON - CO MASS

PAUL SCHERRER INSTITUT

CODE VERSION COMPARISON - H₂ MASS

2nd EMUG Meeting, Prague

PAUL SCHERRER INSTITUT

HEAT GENERATION

7500

8000

MASS RELOCATION WITH 1.8.5 RD

PAUL SCHERRER INSTITUT

CPU TIME CONSUMPTION (0.1s, 0.025s, 0.2s)

2nd EMUG Meeting, Prague

Calculations of ACRR DF-4 performed with several MELCOR 1.8.5, 1.8.6 and 2.1 versions Comparison for temperatures not possible because of thermocouple limitations

Fairly good agreement for hydrogen generation

- - moderate dependence on timestep and noding for this case
- B₄C contributes only slightly to calculated oxidation during ACRR DF-4, several different factors limits B₄C oxidation
- B₄C sensitivity studies; threshold temperature for B₄C oxidation and interaction with steel, oxidisable fraction, oxidation kinetics
- - interaction with steel inhibits B₄C oxidation
- significant dependence on oxidation kinetic coefficient (if pellets instead of powder)

Calculations ran successfully in most cases

- code problems in mid-transient concerning Zry oxidation (V1.8.5RD and V1.8.6YV)
- Version 2.1_668 shows run time problems
- V 2.1_1576 more stable than V2.1_668
 - no problems with time steps and compiler optimization
- The eutectic reaction would seem an important process to model, not only for $\mathsf{B}_4\mathsf{C}\text{-}$ steel
- recommendation to reactivate
- recommendation also to include oxidation of B₄C-steel mixtures

• Assessment of MELCOR 1.8.6 and MELCOR 2.1 continues –feedback being provided to USNRC and Sandia Labs

The author wishes to acknowledge the provision of funding by Swissnuclear.

Thank you for your attention

