

Wir schaffen Wissen – heute für morgen

Air Oxidation Modelling at PSI

Presented at the Second European MELCOR User Group, Prague, 1-2 March 2010

Jon Birchley (PSI)

Outline

- Air oxidation model development at PSI
 - background
 - summary description of model
 - comparison with test data
- OECD Spent Fuel Programme
- Current plans

Background – effect on accident evolution

Air oxidation is important in determining boundary conditions for FP release

Technical background

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

Background – air oxidation scenarios

Technical background

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

Background – ruthenium release

- Air ingress into a damaged reactor core may lead to increased FP release, especially that of ruthenium, e.g. shown by AECL HCE data
- Ru release and transport were extensively studied experimentally and by modelling in the EU SARNET 6th FW project
- Effect of air on Ru release modelled, also persistence of volatile forms in the containment was demonstrated
- Further expts and modelling to conclude the study in the EU 7th FW SARNET2 project, starts early 2009 for 4 years

Summary of air oxidation phenomena

- Exposure to air degrades the oxide layer and promotes transport of oxidant to the metal surface
 - oxide scale has higher porosity and may be broken away
- Reaction with oxygen takes precedence over reaction with steam
 - oxygen and steam kinetics similar
 - nitrogen enhances oxidation by both steam and oxygen
- Kinetics are influenced by many factors
 - may be dependent on temperature, previous oxidation history (fading memory effect), cladding alloy, ...
- Existing correlations typically overestimated oxidation rate
 - calculated oxygen starvation at the key location may be non-conservative
- A more complete treatment is required to provide essential boundary conditions for the fission product release and transport models

Technical background

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

Technical background

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

Classical models for pre-transition air oxidation

Comparison with data test in 25% O₂/75% Ar mixture at 1200 °C

Presented at the 2nd European MELCOR Users' Group Meeting, held in Prague, March 2010

Comparison with BOX test in air and steam then air at 1200 °C

Presented at the 2nd European MELCOR Users' Group Meeting, held in Prague, March 2010

Outline of model concept - 1

- Define breakaway condition as an upper limit on effective oxide thickness

 - where

- and

- cladding oxidation rate/area: $R = \rho_{7r} d(\delta)/dt \sim A \exp(-B/T) / \delta^*$ $\delta^* = \max (\delta_0, \min (\delta, \delta^*))$ δ_0 is some minimum (<< δ^*) δ = true oxide thickness

- Separate values of δ^* are defined for air and steam
 - typically $\delta^*_{air} < \delta^*_{steam}$
- In general δ^* is a function of temperature, material and possibly other factors
- We also define a criterion for onset of breakaway δ , crit ($\geq \delta^*$) and timescale τ over which the limit value δ^* is applied
- Model parameters δ , crit, δ^* , τ will be mostly based on results of recent and current separate-effects experiments

Outline of model concept - 2

PAUL SCHERRER INSTITUT

Comparison with thermal balance tests in O₂ and air (T = 800 °C)

Presented at the 2nd European MELCOR Users' Group Meeting, held in Prague, March 2010

PAUL SCHERRER INSTITUT

Reconstruction QUENCH-10 oxide layer growth

Presented at the 2nd European MELCOR Users' Group Meeting, held in Prague, March 2010

Effect of different cladding types

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

Isothermal tests – TG results

M Steinbrück, "Oxidation of diferent cladding alloys in steam at temperatures 600-1200 °C", 14th QUENCH Workshop, Forschungszentrum, Karlsruhe, November 2008

Presented at the 2nd European MELCOR Users' Group Meeting, held in Prague, March 2010

Laboratory for Thermal Hydraulics Nuclear Energy and Safety

GNF 9×9 BWR - SNL/NRC

Westinghouse 17×17 PWR - SNL/OECD

PAUL SCHERRER INSTITUT

PWR and BWR Assembly Geometries Laboratory for Thermal Hydraulics Nuclear Energy and Safety

 $\cap \cap \cap \cap \cap$ $\cap \subset$ Storage cell ŎŎŎŎŎŎŎŎ **Partially** A)A',A',C A)A),C C A)A',A',A),A),C C A OOCpopulated 000000000000000000 OO÷ Water tube (W/T)-00000000 ((a)a)a(a)a)a)a((ba)a)a(a)a)a 0000000 **Channel box** 000000000 000000000 ישמומומינכישמיש **Fully** populated **Guide tube** $) \cap \cap \cap$ $\bigcirc\bigcirc($ ()()galalgala bigʻip bigalalarb OOC0000)000000000)000000000 **PWR 17×17** דכוכוכולכס....כסור : 264 Fuel rods **BWR 9×9** 24 Guide tubes • 74 Fuel rods (8 partial CO.C. 0.1 D.C. CO.D.C. C.D.C. length) 1 Instrument tube • 2 Water tubes 11 spacers 7 spacers Storage cell **Channel box** Storage cell

PWR testing program

- Phase 1
- Axial Ignition
 - Temp profiles measurements
 - Buoyancy induced flow measurements
 - Axial O₂ profile measurements
 - Nature of fire
- Phase 2
- Radial Propagation in a 1 + 4 arrangement
 - Determine nature of radial fire propagation
 - Effect of fuel rod ballooning

Current plans for 2009-2012

- Implement in MELCOR
 - in progress in local version of MELCOR 1.8.6
- Validation against independent data
 - bundle tests: QUENCH-10 and PARAMETER SF4: 2010
 - data from Spent Fuel Pool Programme
- Further developments
 - implementation in MELCOR 2
 - requires active collaboration among SNL, NRC and PSI
 - possible extension to alternative cladding alloys (M5, Zirlo, E-110)

- The authors gratefully acknowledge support by the Swiss Nuclear Safety Authority (ENSI)
- The work is being performed in the frame of Swiss participation in CSARP and European programmes
- The authors gratefully acknowledge material provided by FZK and IRSN in preparing this presentation
- Thank you for your attention

