

1st Meeting of European

MELCOR Users Group,

MELCOR code application to VVER440/V213 analyses

Villigen, Switzerland

15 - 16 December 2008

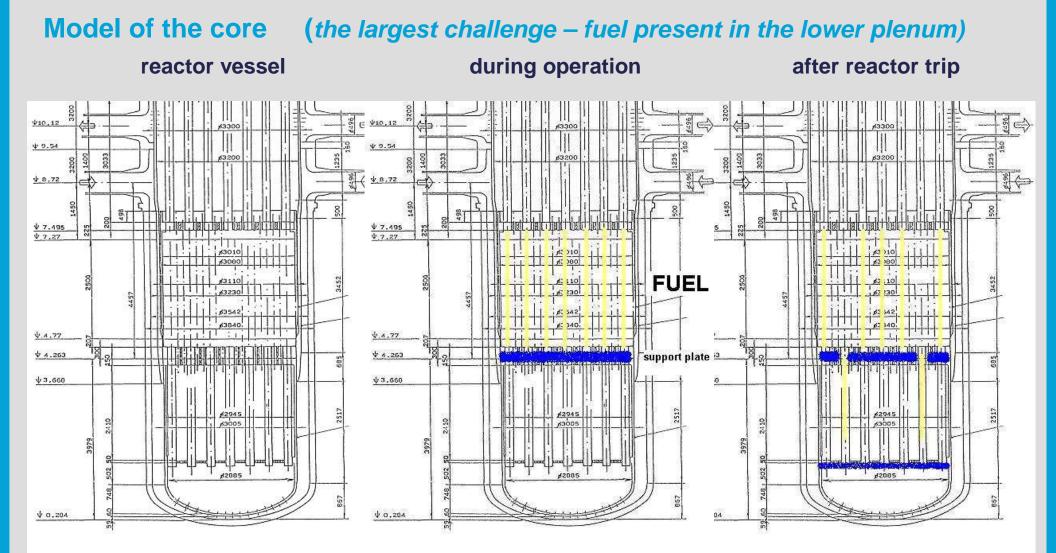
Juraj Jančovič

jancovic@vuje.sk

CONTENT

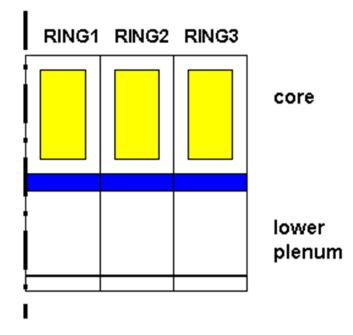
- overview of MELCOR models
- core model of VVER440/V213
- AICC pressure calculation
- conclusions

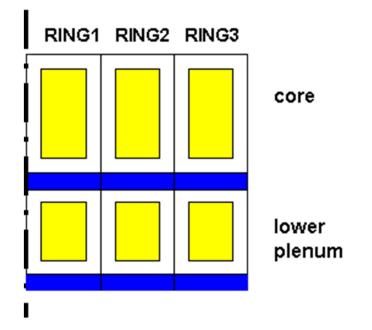
MELCOR code usage in VUJE

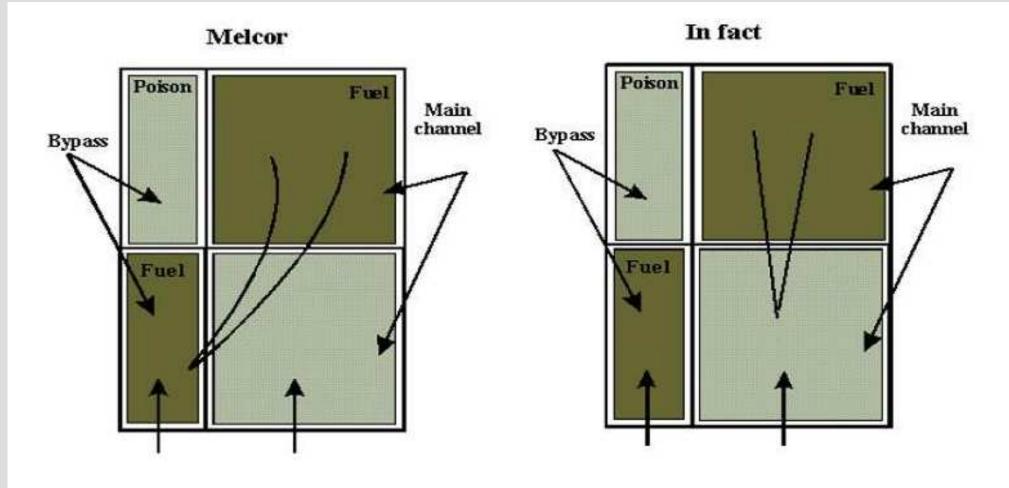

MELCOR

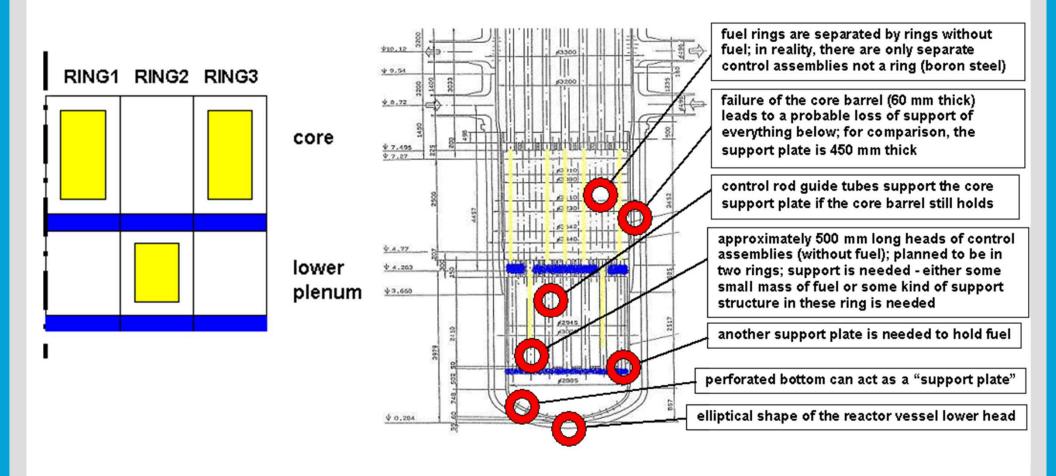
- versions 1.8.3 and 1.8.5 have been used in VUJE,
- model development focused exclusively onto VVER440/V213 design,
- the most widely used severe accident code in VUJE.

Models of VVER440/V213 for MELCOR


- 2-loop model for MELCOR 1.8.3
 - used for research and development projects,
- 2-loop model for MELCOR 1.8.5
 - used for safety reports, PSA L2 scenario analyses, hydrogen risk assessment,
- 6-loop model of shut-down reactor
 - used for research projects,
- **Detailed containment model**
 - used for safety reports, containment phenomena.




Modelling possibilities – already used


Relocation; steam flow through channels – hydrogen production

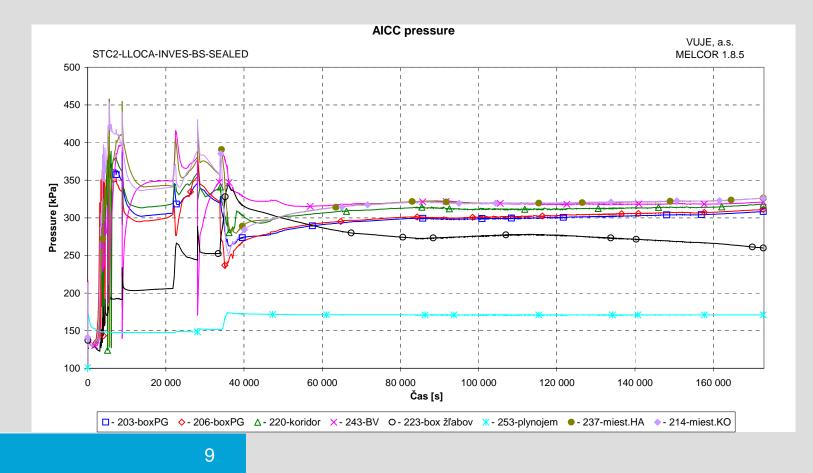
Model of the core

Modelling possibility – planned

AICC pressure calculation used for estimation of hydrogen risk

- Evaluation of DDT risk planned for further models

VVER440/V213 containment features


- "semidetached" rooms in the containment large differences in AICC pressures
- airtraps influence amount of noncondensable gases present in the containment
- low containment design pressure 250 kPa^{abs}
- structural analyses show "failure pressure" cca. 350 kPa^{abs}
- AICC pressure below 350 kPa^{abs} and low probability of DDT in the rooms of the containment is the goal of a successful hydrogen risk mitigation strategy.

Assessment of pressure in the containment after hydrogen combustion is of predominant interest.

External code calculation

An external code is used for evaluation of AICC pressure peaks in containment volumes. Disadvantage is that the code calculates AICC pressure only from plot file data.

Internal calculation – AICC module

An algorithm of AICC calculation was prepared and incorporated into the MELCOR model (input deck). The model tracks AICC pressure in every time step. Hydrogen and carbon monoxide combustion is considered. Disadvantage is that for now only 3 control volumes are calculated simultaneously. Out of memory/variables error encountered.

Comprises 6 general TFs, 11 general CFs and 219 CFs per calculated volume. Output for every calculated control volume:

- AICC pressure written to plot file,
- max. AICC pressure during scenario,
- AICC temperature written to plot file.

K

Model verification against MELCOR

Model was verified against MELCOR calculations using BUR package. Closed (isochoric) control volumes without heat structures (adiabatic) with combustion completeness set to 1.0 (complete) were used.

Various initial conditions and hydrogen (and CO) concentrations were used.

Tab. 2.1-2 C	Comparisor	of AICC algorithm	n against	MELCOR ca	lculation	, p _p =101,3	kPa, T = 300
	300 K	P	(Pa)				
	cH₂ (-)	Initial pressure	AICC	MELCOR	др (Ра)	δp (-)	
	0.02	103 061	179 300	180 010	710	0.00394	
	0.04	105 208	255 490	255 750	260	0.00102	
	0.06	107 447	329 360	329 140	-220	-0.00067	
	0.08	109 783	401 920	401 520	-400	-0.001	
	0.10	112 222	474 020	473 640	-380	-0.0008	
	0.12	114 773	546 280	545 960	-320	-0.00059	
	0.14	117 442	619 060	618 860	-200	-0.00032	
	0.16	120 238	692 660	692 530	-130	-0.00019	
	0.18	123 171	767 430	767 240	-190	-0.00025	
	0.20	126 250	843 560	843 230	-330	-0.00039	

VUJE AICC pressure calculation

Model verification against MELCOR

Tab. 2.1-3	Comparisor	n of AICC algo	rithm agains	st MELCOR ca	alculation,	, p _p =101,3	kPa, T = 350 K	Tab. 2.1-5		•	-	rithm agai	nst MELCO	R calculati	on,
	350 K		р (Ра)						$\mathbf{p}_{\mathrm{p}}=\mathbf{p}_{\mathrm{p}}$	101,3 kPa, '	T = 300 K				
	cH₂ (-)	Initial press.	AICC	MELCOR	∆р (Ра)	δp ()				300 K		p (Pa)			
	0.02	141 985	225 580	226 300	720	0.00318				cCO (-)	poč. tlak	AICC	MELCOR	<u>Ар (</u> Ра)	δр (-)
	0.04	144 943	309 330	310 070	740	0.00239				0.02	101 300	188 940	189 570	630	0.003323
	0.06	148 026	390 490	391 390	900	0.0023				0.04	101 300	267 960	267 860	-100	-0.00037
	0.08	151 244	469 950	471 350	1 400	0.00297				0.06	101 300	339 220	338 470	-750	-0.00222
	0.10	154 605	548 740	550 670	1 930	0.0035				0.08	101 300	404 740	403 540	-1 200	-0.00297
	0.12	158 119	627 480	629 950	2 470	0.00392				0.1	101 300	465 850	464 230	-1 620	-0.00349
	0.14	161 796	706 710	709 750	3 040	0.00428				0.12	101 300	523 460	521 250	-2 210	-0.00424
	0.16	165 649	786 940	790 290	3 350	0.00424				0.14 0.16	101 300 101 300	577 990 629 720	575 080 626 040	-2 910 -3 680	-0.00506 -0.00588
	0.18	169 689	868 580	871 950	3 370	0.00386				0.18	101 300	679 140	674 390	-3 880	-0.00500
	0.20	173 931	951 730	955 100	3 370	0.00353				0.10	101 300	726 290	720 310	-4 7 50	-0.00704
							•		L L	0.4	101 000	120 200	120 010	0000	0.0000
100 B								240	~ I					11.4	````
Tab. 2.1.4	Comparisor	n of AICC algo	rithm agains	st MELCOR ca	alculation,	LOCA	Tab.	2.1-6	Combus	tion of hyd	rogen and (CO (oxyge	n starvation	condition	s)
Tab. 2.14			p (Pa)			LOCA	Tab.					p (Pa)		condition	s)
Tab. 2.1-4	Comparisor CH2 (-)	Initial press.	p (Pa) AICC	st MELCOR ca MELCOR	<u> Ар (Ра)</u>	δр ()	Tab.		Combus cH2 (-)	tion of hyd cCO (-)		p (Pa)		condition Ap (Pa)	s) δp (-)
Tab. 2.1.4		Initial press.	p (Pa) AICC 188 780	MELCOR 189 400	др (Ра) 620	бр () 0.00327	Tab.			- cC0 (-)	poč. tla	p (Pa) k AICC 0 748 43	MELCOR		δp (-)
Tab. 2.1.4	cH2 (-)	Initial press. 117 552 120 001	p (Pa) AICC	MELCOR	<u> Ар (Ра)</u>	δp (-) 0.00327 0.00207			cH2 (-)	cCO (-)	poč. tla	p (Pa) k AICC	MELCOR	<u> Ар (</u> Ра)	δp (-) -0.00516 -0.00603
Tab. 2.1-4	cH2 (.)	Initial press. 117 552 120 001 122 554	p (Pa) AICC 188 780 260 110 329 200	MELCOR 189 400 260 650 329 810	Δp (Pa) 620 540 610	δp (–) 0.00327 0.00207 0.00185			cH2 (-) 0.11 0.12 0.13	cCO (-)	poč. tla 11 101 30 12 101 30 13 101 30	p (Pa) k AICC 00 748 43 00 791 09 00 832 25	MELCOR 0 744 590 0 786 350 0 826 220	Δp (Pa) -3 840 -4 740 -6 030	δp (-) -0.00516 -0.00603 -0.0073
Tab. 2.1.4	cH2 (.) 0.02 0.04	Initial press. 117 552 120 001 122 554 125 218	p (Pa) AICC 188 780 260 110 329 200 396 870	MELCOR 189 400 260 650 329 810 397 810	Δp (Pa) 620 540 610 940	δp (-) 0.00327 0.00207 0.00185 0.00236			cH2 (-) 0.11 0.12 0.13 0.14	cCO (-)	poč. tla 11 101 30 12 101 30 13 101 30 14 101 30	p (Pa) k AICC 10 748 43 10 791 09 10 832 25 10 872 18	MELCOR 0 744 590 0 786 350 0 826 220 0 864 270	Δp (Pa) -3 840 -4 740 -6 030 -7 910	δp (-) -0.00516 -0.00603 -0.0073 -0.00915
Tab. 2.1-4	CH2 (-) 0.02 0.04 0.06 0.08 0.10	Initial press. 117 552 120 001 122 554 125 218 128 001	p (Pa) AICC 188 780 260 110 329 200 396 870 463 980	MELCOR 189 400 260 650 329 810 397 810 465 300	Δp (Pa) 620 540 610 940 1 320	δp (-) 0.00327 0.00207 0.00185 0.00236 0.00284			cH2 (-) 0.11 0.12 0.13 0.14 0.15	- cCO (-) 	poč. tla 11 101 30 12 101 30 13 101 30 14 101 30 15 101 30	p (Pa) k AICC 10 748 43 10 791 09 10 832 25 10 872 18 10 874 29	MELCOR 0 744 590 0 786 350 0 826 220 0 864 270 0 866 280	▲p (Pa) -3 840 -4 740 -6 030 -7 910 -8 010	δp (-) -0.00516 -0.00603 -0.0073 -0.00915 -0.00925
Tab. 2.1-4	CH2 (-) 0.02 0.04 0.06 0.08	Initial press. 117 552 120 001 122 554 125 218 128 001 130 910	p (Pa) AICC 188 780 260 110 329 200 396 870 463 980 531 040	MELCOR 189 400 260 650 329 810 397 810 465 300 532 760	Δp (Pa) 620 540 610 940 1 320 1 720	δp (-) 0.00327 0.00207 0.00185 0.00236 0.00284 0.00323			cH2 (-) 0.11 0.12 0.13 0.14 0.15 0.16		poč. tla 11 101 30 12 101 30 13 101 30 14 101 30 15 101 30 16 101 30	p (Pa) k AICC 10 748 43 10 791 09 10 832 25 10 872 18 10 874 29 10 858 45	MELCOR 0 744 590 0 786 350 0 826 220 0 864 270 0 866 280 0 851 320	▲p (Pa) -3 840 -4 740 -6 030 -7 910 -8 010 -7 130	δp (-) -0.00516 -0.00603 -0.0073 -0.00915 -0.00925 -0.00838
Tab. 2.1-4	CH2 (-) 0.02 0.04 0.06 0.08 0.10	Initial press. 117 552 120 001 122 554 125 218 128 001 130 910 133 955	p (Pa) AICC 188 780 260 110 329 200 396 870 463 980 531 040 598 530	MELCOR 189 400 260 650 329 810 397 810 465 300 532 760 600 680	▲p (Pa) 620 540 610 940 1 320 1 720 2 150	δp (-) 0.00327 0.00207 0.00185 0.00236 0.00284 0.00323 0.00358			cH2 (-) 0.11 0.12 0.13 0.14 0.15 0.16 0.17		poč. tla 11 101 30 12 101 30 13 101 30 14 101 30 15 101 30 16 101 30 17 101 30	p (Pa) k AICC 00 748 43 00 791 09 00 832 25 00 872 18 00 874 29 00 858 45 00 842 39	MELCOR 0 744 590 0 786 350 0 826 220 0 864 270 0 866 280 0 861 320 0 836 040	Ap (Pa) -3 840 -4 740 -6 030 -7 910 -8 010 -7 130 -6 350	δp (-) -0.00516 -0.00603 -0.0073 -0.00915 -0.00925 -0.00838 -0.0076
Tab. 2.1-4	CH2 (-) 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16	Initial press. 117 552 120 001 122 554 125 218 128 001 130 910 133 955 137 144	p (Pa) AICC 188 780 260 110 329 200 396 870 463 980 531 040 598 530 666 870	MELCOR 189 400 260 650 329 810 397 810 465 300 532 760 600 680 669 220	▲ (Pa) 620 540 610 940 1 320 1 720 2 150 2 350	δ p (-) 0.00327 0.00207 0.00185 0.00236 0.00284 0.00358 0.00351			cH2 (-) 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18	cCO (-)	poč. tla 11 101 30 12 101 30 13 101 30 14 101 30 15 101 30 16 101 30 17 101 30 18 101 30	p (Pa) k AICC 00 748 43 100 791 09 100 832 25 100 872 18 100 874 29 100 858 45 100 842 39 100 825 98	MELCOR 0 744 590 0 786 350 0 826 220 0 864 270 0 866 280 0 866 280 0 851 320 0 836 040 0 820 430	▲p (Pa) -3 840 -4 740 -6 030 -7 910 -8 010 -7 130 -6 350 -5 550	5 <i>p</i> (-) -0.00516 -0.00603 -0.0073 -0.00915 -0.00925 -0.00838 -0.0076 -0.00676
Tab. 2.1-4	CH2 (-) 0.02 0.04 0.06 0.08 0.10 0.12 0.14	Initial press. 117 552 120 001 122 554 125 218 128 001 130 910 133 955	p (Pa) AICC 188 780 260 110 329 200 396 870 463 980 531 040 598 530	MELCOR 189 400 260 650 329 810 397 810 465 300 532 760 600 680	▲p (Pa) 620 540 610 940 1 320 1 720 2 150 2 350 2 330	δ p (-) 0.00327 0.00207 0.00185 0.00236 0.00284 0.00358 0.00351			cH2 (-) 0.11 0.12 0.13 0.14 0.15 0.16 0.17		poč. tla 11 101 30 12 101 30 13 101 30 14 101 30 15 101 30 16 101 30 17 101 30 18 101 30 19 101 30	p (Pa) k AICC 00 748 43 00 791 09 00 832 25 00 872 18 00 874 29 00 858 45 00 842 39	MELCOR 744 590 786 350 826 220 864 270 866 280 866 280 851 320 836 040 836 040 820 430 804 500	Ap (Pa) -3 840 -4 740 -6 030 -7 910 -8 010 -7 130 -6 350	δp (-) -0.00516 -0.00603 -0.0073 -0.00915 -0.00925 -0.00838 -0.0076 -0.00676 -0.00619

VUJE AICC pressure calculation

Model validation against charts based on experimental data Model was validated against charts provided along experimental data in "Reactor Safety Course (R-800), USNRC Technical Training Center, Rev 1193"

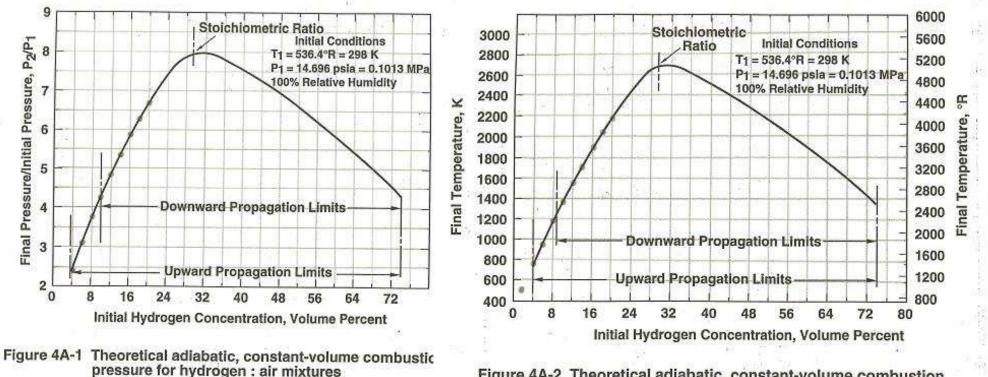


Figure 4A-2 Theoretical adiabatic, constant-volume combustion temperature for hydrogen : air mixtures

Conclusions – core modelling

- fuel/debris support is the main uncertainty in the modelling,
- planned core modelling (core rings without fuel) is being applied for a new model,
- support structures situated below the core support plate can influence core degradation timing and consequently also corium interaction with the reactor pressure vessel

Conclusions – AICC pressure calculation

Relatively simple model developed. Ready to be used for hydrogen risk related calculations.

Incorporation of such a calculation into the CVH or BUR module would be helpful.

CVH-PAICC.n or BUR-PAICC.n ... maybe?