MELCOR Code Development Status, Code Assessment, and QA

Larry L. Humphries, Randall Gauntt (SNL)
and
Hossein Esmaili (NRC)
MELCOR Code Development

• MELCOR is developed by:
 – US Nuclear Regulatory Commission
 – Division of Safety Analysis (DSA)
 – Office of Nuclear Regulatory Research

• MELCOR Development is also strongly influenced by the participation of many International Partners through the US NRC Cooperative Severe Accident Research Program (CSARP and MCAP)
 – Development Contributions – New models
 – Development Recommendations
 – Validation
Current MELCOR Development

Code Readiness
- code ready for applications
- code not ready for applications

Code life-cycle
- code conversion phase
- code development phase
- code maintenance phase

MELCOR 1.8.6
- Molten pool models
- Core Package upgrade
- Released Fall 2005
- Code Maintenance
- Current Workhorse

MELCOR 2.1
- FORTRAN 95
- New input
- 2.0 beta version released Sept 2006
- 2.1 Release Sept 2008

MELCOR 3
- Current developmental version
MELCOR 3.0 Code Development Thrust Areas

Code reliability
- Validation
- QA
- Numerical stability

User Utilities
- Converter
- PTFREAD
- SNAP
- Uncertainty Engine

Code Enhancements
- New/improved modeling
- Code performance
MELCOR 2.1

- Source code ported to Fortran-95 by IBRAE
- Essentially equivalent to MELCOR 1.8.6 modeling
 - Many MELCOR1.8.6 execution issues resolved
 - Bit-for-bit parity between v1.8.6 & v2.0
 - New models added to M2.1
- Dynamically allocated memory
 - Arbitrary number of objects (CVs, FPs, Cells, etc.) limited by the available system memory
- Input deck converter
 - Can be used to ‘replace’ MELGEN to jumpstart use of code
 - Improvements to GUI
 - Double precision version
 - Debugged against assessments
Code Development: Code Reliability

MELCOR

User Utilities

Code Enhancements

Code Reliability
Software Quality Assurance

• Review of current SQA practices
 – Internal audit & review
• Code Configuration Management (CM)
 – Recently moved to ‘Subversion’ CM
• Assessment calculations of MELCOR 2.1
 – Currently underway
 – Regression testing and reporting
 – Automation of testing and reporting procedures
 – Nightly builds & testing
• Bug tracking and reporting
 – Bugzilla online
Software Quality Assurance

• Sandia Corporate Process Requirement 001.3.6 (CPR 001.3.6)

• The software management framework adapted from two internationally recognized standards
 – the Capability Maturity Model Integration (CMMI) ®
 – and ISO 9001
 – These standards provide elements of traceability, repeatability, visibility, accountability, roles and responsibilities, and objective evaluation

• Process areas
 – Project planning and oversight
 – Requirements Development and Management
 – Risk Management
 – Configuration Management
 – Technical Solution
 – Integrated Teaming
 – Integrated Product
 – Verification and Validation
 – Measurement and Analysis
 – Development and Lifecycle Support
Software Quality Assurance
Annual Re-evaluation

- Annually review of MELCOR SQA Practices.
 - Weighted average of team members
 - 0-None, 1-Little, 2-More, 3-Most
- Highlights areas of improvements.
 - Verification & Validation
 - Collected Improvement Data
 - Risk Management
 - Integrated Teaming
- Focuses attention on areas needing improvement
 - Requirements Development and Management
 - Integrated Product Development
- Sandia’s commitment to SQA
MELCOR Assessments

- **MELCOR 2.1 Assessment Matrix**
 - Over 70 calculations currently in the assessment matrix
 - Performed by Sandia National Labs and Russian Academy of Science
 - Results to be published with MELCOR 2.1 release

- **Example Experiments**
 - Phebus
 - Quench
 - OLHF/LHF
 - RASPLAV
 - LOFT
 - PANDA
 - FLECHT/SEASET
 - CORA13
 - LACE
 - NUPEC
 - Three-Mile Island

- **Test calculations cover a broad range of phenomenon**
 - Core uncovering (i.e., TMI-2 and LOFT-FP2),
 - Core damage/melt relocation (TMI-2, PHEBUS, LOFT-FP2)
 - Core to upper plenum natural circulation (TMI-2)
 - Natural circulation within SG tubes (i.e., IIST)
 - Core to lower plenum natural circulation (i.e., BACCHUS tests)
 - Lower head failure (i.e., LHF & OLHF)
 - FP release (i.e., ORNL HI & VI, VERCORS, PHEBUS)
 - Containment Thermal Hydraulics (i.e., CVTR, HDR, NUPEC, Marviken blowdown, CSTF ice condenser, PANDA etc.)
 - Aerosol Deposition (i.e., ABCOVE, SUPRA pool scrubbing, DEMONA, etc.)
Alternative TMI-2 Accident Benchmark Study

• OECD/CSNI Alternative TMI-2 Scenario Benchmark
 – Participating codes: ASTEC v1.3, ATHLET-CD, ICARE/CATHARE V2, MAAP4, MELCOR 1.8.5, MELCOR 1.8.6
 – Objective to perform a benchmark on a well-defined plant (similar to TMI-2) and with prescribed boundary conditions

• Conclusions
 – Codes performed well in all phases with little or no tuning of parameters
 – Importance of adequate user training
 – Prediction of oxidation of molten mixtures
 – Prediction of UO₂ melting & interactions
 – Prediction of debris coolability
• The key quantities of interest obtained from Test M-8-2 include:
 – **Helium** (e.g., simulated hydrogen) mixing;
 – Containment **spray** performance
 – **Pressure** and temperature response and stratification.
Key phenomena in the LOFT LP-FP-2 tests were oxidation/hydrogen generation, relocation of core materials, forced convection, conduction, radiation, and fluid-structure heat transfer, pressure response.

Hydrogen Production from Oxidation of Zircaloy Cladding

CFM Cladding Temperature 0.25 m from Bottom of Module
• Key phenomena in the CORA-13 tests were oxidation/hydrogen generation, relocation of core materials, forced convection, conduction, radiation, and fluid-structure heat transfer.
MELCOR 2.1 Assessment
LACE-LA-4

- **Aerosol** Modeling
- Hygroscopic effects
 - Temperatures
 - Pressures
• **Key Phenomenon**
 - Core material relocation,
 - *temperature* histories,
 - Heat conduction/convection
 - fuel relocation
 - *hydrogen* production.
 - hydrogen production occurs during the initial steam phase before any relocation,
 - relatively insensitive to simulation parameters.
MELCOR Code Regression Testing

• Test Suite run on a distributed computer cluster
 – 10 Dell PowerEdge 2950s (40 runs)
 • 2 Dual Core, Hyperthreading 64-bit Xeon Processors, with 2MB cache, running at 3 GHz
 • 667MHz Front-side bus
 • 8GB RAM
 – DEF - tool for automatically launching jobs to distributed machines
 – Results archived in subversion

• Test Cases
 – Standard test cases chosen for physics coverage ~14 test cases
 • New cases will be added as validation calculations are run
 • Debug & optimized versions tested
 • Unix versions not tested as frequently (will test more frequently in future)
 – Special purpose cases to address particular bug issues
Regression Tests

• Regression testing performed with each interim code release

• Standard Test Suite
 – Qualifies the code for particular application
 • Analytical results
 • Using ISP or other recognized assessments
 • Baby problems
 – Formal regression testing report (made available to users)
 – Review test cases
 • Every major code release
 • Coverage testing

• Special Purpose Testing
 – Regression test for each resolved bug
 – Regression test for new feature or enhancement
 – Responsibilities of submitter (owner)
 • supply success criterion
 • review test results for success
 – Test case made inactive after three successes (still available for future testing)
MELCOR Code Regression Test Report

- **Auto-generated regression test report**
 - Readable and highly formatted report (PDF)
 - Auto-generation allows report for each interim code release
 - Reports to be made available to users

- **Side-by-side comparison of regression test results**
 - Comparison plots for two code versions
 - Event time tables

- **Test suite coverage tables**

- **Test case dimension table**

- **Pedigree information**

Automated Nightly builds and regression testing (New!)
Bugzilla site for bug reporting, tracking, and information
 - Available from SNL web page

Users submit bugs and details
 - OS, Hardware, affected packages, severity
 - Bug description
 - Attachments

Comments and attachments can be marked private and not visible to other users

Utilized more by MELCOR community
 - 90 bugs (M1.8.6) reported last 12 mos.
 - 68 bugs (M1.8.6) resolved
 - 22 bugs (M1.8.6) unresolved
Bugs Tracked in MELZILLA

- Automated applications for reporting issue management
 - Integrated with MSOffice, Bugzilla, and internal Wiki
 - Charts of open/assigned issues
 - Leveling bugs with developers availability
 - Timeline showing issues entered into bugzilla
 - Trying to reduce the length of time a bug is left open
 - Some issues are harder to resolve than others

Need to eliminate bugs that are unresolved for more than a month
Post-Workshop Bugs (M2.1)

- 218: Steady-State option leads to temperature on HS_ND record and warning in MELGEN
- 228: Logic error 4 in CVHMOM
- 229: Failure with converted input for VVER440
- 230: Error with unformatted EDF files
- 231: No error checks for time-dependent volume properties
- 234: File open warning in M_EXEC
- 236: PWR Shroud collapse temperature
- 238: Advanced B4C modeling
- 239: VVER calculation volume freezing – Film Tracking
- 240: CORA-13 COREU3 run-time error
- 241: Integer valued CF arguments
- 242: MELCOR 2.1 freezes
- 251: In CVH_INPUT CV_SOU the H2O_VAP for IDMAT isn’t functioning properly
- 252: COROXY call to COROXD can result in invalid memory writes
- 254: MACCS interface variables calculation bug
- 257: Component collapse parameters
- 259: Wrong listing of film tracking in MEGOUT_v2-0
- 260: Abnormal termination on EDF with Belikov error
- 261: LOGIC ERROR 4 in CVHMOM
- 262: Content of ERROR and WARNING Messages
- 265: NMPAIR on DCH_EL is supposed to be optional
- 266: Array bounds exceeded in elheat_NSI
- 267: Error flag not set in cvhbv1_NSI
- 271: IHX model incorrectly implemented
- 272: Input echo missing comments and global variables
MELCOR Developers Wiki Site – Internal Use

- MELCOR Developers Wiki
 - Archive records
 - Requirements
 - Testing reports
 - Quality Records
 - Assessment work
 - Information Sharing
 - Debugging Policies
 - Testing Policies
 - Code Development practices
 - Coding Conventions
 - Lessons Learned
 - Software Risk Management
 - Version Changes
MELCOR Web Page

- New Look
- Downloads
 - MELCOR executables
 - Converter executables
 - 2.1 GUI
 - Documentation
 - PTFREAD
 - Change Documents
- Workshop / CSARP information
- Bug reporting
- FAQs
- More? Regression reports,...
MELCOR Online: Downloading MELCOR

- Account login is your email address
- All authorized MELCOR users are given an account
 - First time users must receive authorization from USNRC
- Access from MELCOR website or go directly to https://melcor.sandia.gov/MelcorDownloads/MelcorDownloadStart.aspx
- You can follow its hierarchical links to access every file on the system

To quickly download the latest version of MELCOR, just click the “Latest News” link to see a page like this:

Current News as of September 1, 2008

MELCOR 2.1 has been released. View Change Document.

To download the latest version, click here.

Click on the appropriate link for the User’s Guide and Reference Manual.

Other Options

- Main Menu
- Old News
MELCOR 1.86.YS Changes

<table>
<thead>
<tr>
<th>Subversion Branch Location</th>
<th>Start Revision # from SubVersion Repository</th>
<th>Finished Revision # from SubVersion Repository</th>
<th>Changed Files</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk</td>
<td>920</td>
<td>NA</td>
<td>CoredT</td>
<td>Fixes problem with zero clad masses for the COR text editor for all the test problems. (Bug: 114)</td>
</tr>
<tr>
<td>Trunk</td>
<td>928</td>
<td>NA</td>
<td>CoredT, coruin</td>
<td>Fixes problem with steam starvation plot variable. Allows 7 parameters for COREVOL (coruin) and removes extra "." in COR-STARV-OUT plot variable.</td>
</tr>
<tr>
<td>Trunk</td>
<td>915</td>
<td>NA</td>
<td>Cuthra</td>
<td>Disable the new "not quite equilibrium" modeling (Bug #60). This feature will be completed in the next code revision.</td>
</tr>
<tr>
<td>Trunk</td>
<td>914</td>
<td>NA</td>
<td>Enlrsn.f</td>
<td>Fixed problem with surface area calculated for H2 with multiplicity 0.0.</td>
</tr>
<tr>
<td>Trunk</td>
<td>654</td>
<td>NA</td>
<td>Curtge</td>
<td>Restored from rollback. Significant changes to curng by the to resolve some problems observed with the "original YS", and also to resolve bug 147.</td>
</tr>
<tr>
<td>branches/1.86TS</td>
<td>730</td>
<td>841</td>
<td>coruin</td>
<td>Allow INDIVCT for pool scrubbing of all aerosol and vapor species</td>
</tr>
<tr>
<td>BCI/Developers/1joamu/trunk</td>
<td>598</td>
<td>564</td>
<td>CoredS, corps2, corsh1, corsh4, corshm.</td>
<td>Fixed end-dam-flag control function argument.</td>
</tr>
</tbody>
</table>
Code Development: Code Enhancements

- All new code development will be performed in MELCOR 2.1
- MELCOR 1.8.6 – Code Maintenance only
Code Development
HTGR - COR Package Updates

- New reactor models (like present PWR, BWR)
- PBR (pebble bed)
 - New components
 - Pebble fuel
 - New heat transfer coefficients
 - Effective thermal conductivity
 - radiation/convection/conduction
 - Coolant friction loss
- PBR (prismatic)
 - New components
 - Reflectors
 - Hexagonal graphite blocks
 - cell-cell conductive/radiative heat transfer
- Graphite oxidation models
- On-going work
 - Fission product release and transport from HTGR fuel
 - Plant demonstration calculations
• Fueled part of pebble is fuel component
 – UO_2 with extra COR material as graphite
• Unfueled shell is clad component
 – Clad material becomes graphite
• Center reflector component
• Outer reflector component
• Fuel radial temperature profile for sphere
 – Provides peak and surface pebble temperature
 • Better reactor simulation
Radial cell-cell conductive/radiative heat transfer added
 • Uses effective bed conductivity (Zehner-Schlunder with modifications for thermal radiation)
Axial cell-cell conduction modified to use effective bed conductivity
Coolant friction factor is for pebble bed (Ergun equation) when PBR model is invoked
 • Achenbach correlation being investigated
Coolant heat transfer uses pebble bed heat transfer coefficients
PMR COR Model

- More “rod-like”, requires fewer changes to COR
- Fuel compacts represented as fuel component
- Part of hex block associated with a fuel channel is “thick” clad component
 - Temperature gradient in clad as well as fuel
- Reflector components
- Radial cell-cell conductive/radiative heat transfer added
 - Single effective thermal conductivity
Graphite Oxidation Models

- Oxidation of graphite by steam and air
 - The air oxidation rate is implemented as (Richards, 1987)
 \[R_{OX} = 122.19 \exp \left(- \frac{20129}{T} \right) P^{0.5} \]
 - The steam oxidation model is implemented as (Richards, 1988)
 \[R_{OX,steam} = \frac{k_4 P_{H_2O}}{1 + k_5 P_{H_2}^{0.5} + k_6 P_{H_2O}} \quad k_i = K_i \exp \left(- \frac{E_i}{RT} \right) \]

- Maximum rates limited by gaseous diffusion to surface

- Reaction Products
 - Currently, the air reaction produces CO
 - Steam reaction produces CO and H₂
 - The CO/CO₂ mole ratio is given by (Kim and NO, 2006)
 \[f_{CO/CO_2} = 7396e^{-69604/RT} \]
• **Point kinetics for operating reactor applications**
 – Model developed by UNM
 • Stable over wide range of timesteps
 – Temperature-dependent reactivity feedback from COR components
 • Fuel/Moderator/Reflector generalized weighting for spatially averaged feedback
 – External reactivity insertion via control functions
 • Generalized and flexible

Sample Test

- Initial power level is 268 MW
- 0.50 reactivity oscillation (CF)
 - Period is $2\pi / 0.05 = 125$ s
- Doppler feedback from fuel and moderator
- PK Model turned on
- Oscillation started at 400 s
HTGR COR Model Testing

• PBR Testing of new COR model
• Deck adapted from Texas A&M PBR deck
 – Pebbles represented as fuel/clad components instead of debris
 – Steady state problem
 • 268 MW reactor power
 • Run to 1500 s
 – Reactor is older Pty Ltd design as in Reitsma (2006)
HTGR Ongoing Work

- Fission product release and transport from HTGR fuel
 - Release
 - Review PARFUME models
 - Devise simplified MELCOR model (Booth?)
 - Transport
 - Plate out
 - Surface sorption
 - Dust liftoff
- Plant demonstration calculations
 - Use of point kinetics for accidents w/o SCRAM
 - Consider coupling of 2D neutronics (ie PARCS) with COR
- HTGR RCCS model
 - Removal of heat from vessel
- Plant components
 - Gas turbine
 - Heat exchangers
 - Helium circulator
HTGR Ongoing Work contd

- **Stratified flow for air ingress**
 - Original scenario was that air entered by diffusion
 - 10hr timescale
 - CFD simulation shows that air enters via stratified flow and circulation (Kim, 2008)
 - 260s timescale

Heat and Mass Transfer Correlations
- MELCOR code should be able to model the CONTAIN correlations by default
- Modify the MELCOR film tracking model and default model parameters based on the CONTAIN parity

Engineered Safety Features (ESF) Enhancements
- heat exchanger models
- fan cooler models

Improvement of SPARC Models
- Review the SPARC98 model for possible improvements over the earlier SPARC90 model

Improvement of VANESA Models
- improvements for ex-vessel fission product release. Specifically, the modeling of Ru and Mo releases

Others…
Code Development: User Utilities

- Code reliability
- User Utilities
- Code Enhancements

MELCOR
• **SNAP**
 - Symbolic Nuclear Analysis Package developed by API – MELCOR Plug-in

• **PTFREAD**
 - EXCEL add-in for generating plots, analyzing data, creating AVI’s, generation of regression reports

• **MELCOR 2.1 GUI & Converter**
 - Utility for generating MELCOR 2.1 input decks and converting existing MELCOR 1.8.6 decks to new format

• **Uncertainty Software**
 - Suite of tools for running MELCOR in batch, Monte Carlo sampling of variables and analyzing statistics

Supporting Applications

• **Best Estimate with Uncertainty Quantification**

• **Powerful tool for risk-informing regulations**
New AVI format indicates temperature of component by color

Flow velocities
- If horizontal flow paths exist
 - Vertical component
 - linear interpolation of the vertical flow velocity at the flow path junction height horizontal velocity
 - Horizontal component
 - taken from the horizontal flow path.
 - Vector is positioned at the radial center of the CV & the horizontal flow path junction height.
- If a horizontal flow path does not exist
 - The vertical velocity component in a control volume is calculated as the average of all inlet and outlet vertical flow velocities and a vector is drawn at the center of the control volume.
This is a new PTFread calculated variable and is accessed by selecting CALCULATED when asked to specify the MELCOR package for the variable:

- Mass is summed over a user-specified range of materials
- Mass is summed over a user-specified range of components
- Mass is summed over a user-specified range of rings
- Intact and/or conglomerate masses can be indicated
- Wildcards can be used to sum over an entire range

PTFREAD variable Format (as appears in the header row on the data sheet):

- SumMass(intact or conglomerate, material, component, elevations, rings)
- Example: SumMass(*,SS:SSOX,*,1:2:3:4:5,*)

Option for elemental mass in oxide (SSel)

- Only the elemental mass of Fe is included in the sum (does not include Oxygen mass)
New MELCOR Output Format
HTML

- **HTML Time Edits**
 - Specified with global input
 - MEL_HTMLFILE ‘DEMON_Out.htm’
 - File for each time edit
 - Links to other time edits
 - Links to package edits/tables
- **Other Links**
 - SNL/Bugzilla
 - I/O files
 - Code Manuals
 - Graphical Diagrams
 - Node Diagram
 - Temperature contours
Other MELCOR Changes

Code reliability

MELCOR

User Utilities

Code Enhancements
Intel Visual FORTRAN Compiler

- Compaq Visual FORTRAN v 6.6C is current developmental compiler
 - Did not want to make any changes until after 2.1 was released
- Intel Visual FORTRAN will become the new development platform
 - No technical support for CVF
 - Problems with CVF rebuilding entire project
 - Problems with error checking
- Advantages to Intel Compiler
 - Able to build true 64-bit code for 64-bit operating systems
 - Performance improvements
 - Better support for F95 code
 - Error checking
 - Currently the only compiler we are supporting on Linux
 - Improvements to the programmer interface (Visual Studio.NET)
 - Automatic keyword completion
 - Integration with subversion
 - Capability to automatically convert CVF projects
• This and future MELCOR releases will be node-locked
 – Each installation will require a separate license to run
 – A license will only work on the computer for which it was issued
• All licenses will expire
 – Normally within one year
 – Period may be shorter for special releases
 – The version of MELCOR released at this workshop will expire on 1 February 2009
• Check the MELCOR website for upcoming release dates
MELCOR Licensing - Requirements

• Two files now required besides the MELCOR and MELGEN executables:
 – calu_nl.dll
 • Contains the CALU (Cross-plAtform Licensing Utility) software that is called by both MELCOR and MELGEN
 • Any media we provide MELCOR on will also include this DLL
 – Product.key
 • Contains your license
 • This file is requested via email
• Both files must be in the same folder as your MELCOR executable or it will not run
Summary

Code reliability
- Validation
- QA
- Numerical stability

User Utilities
- Converter (Discussed in following presentation)
- HTML Output
- Etc.

MELCOR Code Development

Code Enhancements
- New/improved modeling
- Code performance