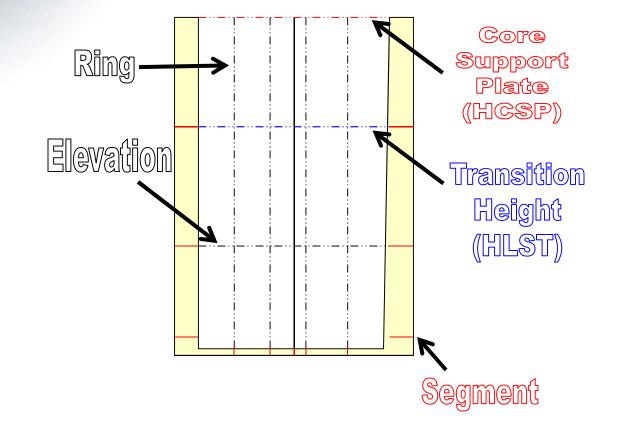

Input Deck Conversion (1.8.5 to 1.8.6 and 1.8.6 to 2.1)

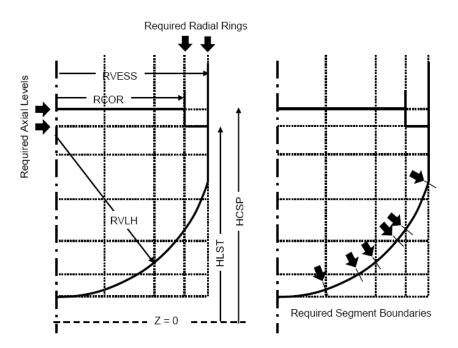
Larry L. Humphries, J. Jun, R. Gauntt (SNL) and Hossein Esmaili (NRC)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Overview

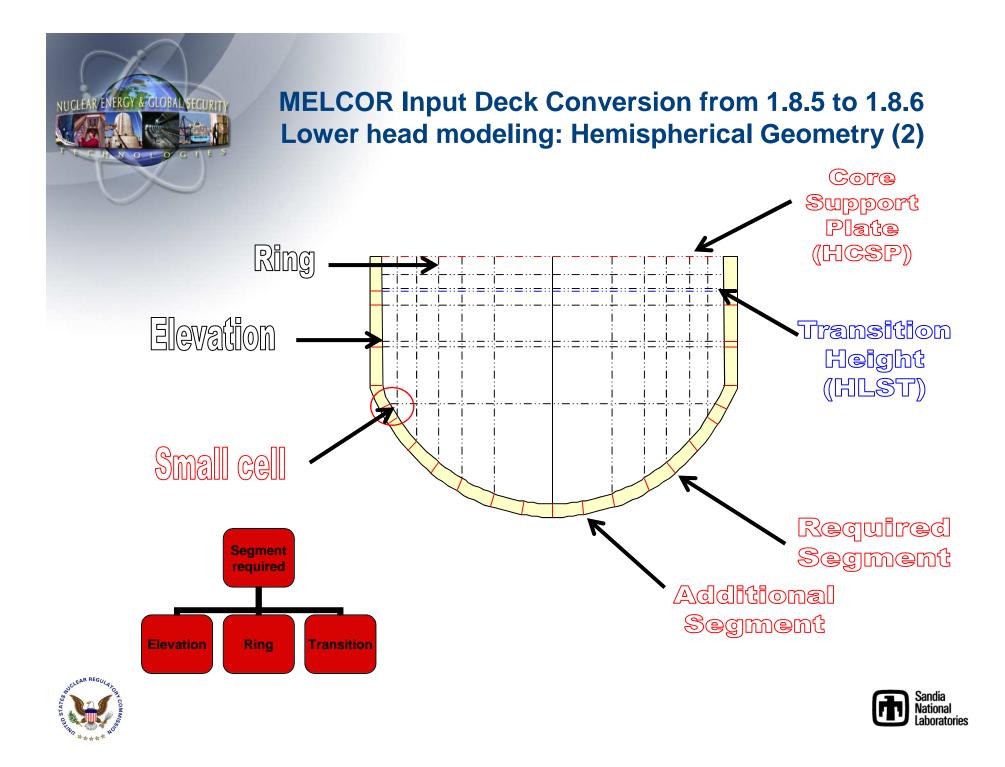

- New models in 1.8.6
 - Lower head modeling (cylindrical or curved geometries)
 - Added ring beneath downcomer region
 - Control rod Ag release
- Required input changes
- Input Deck Converter

MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Lower head modeling: Cylindrical Geometry



MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Lower head modeling: Hemispherical Geometry (1)

Required Data


NUCLEAR/ENERGY & GLOBAL SECURIT

- Elevation of BWR baffle plate or PWR bottom plate (HLST)
- Elevation of core support plate (HCSP)
- Inner radius of vessel cylinder (RVESS)
- Outer radius treated in COR package above HLST (RCOR)
- The radius of curvature inside of the lower head (RVLH)

MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Required Input Changes

- Deletion of Records
 - New *DELETE* option to remove records. This is only required when using a r*i*f file to specify all changes to an existing deck
- Modification of Records
- Addition of new records
 - New NULL option to specify empty cells in downcomer region and outside hemispherical lower head

MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Required Input Changes: Deletion of records

- Heat structure records associated with lower head (HSccccckk)
- Core elevation records associated with lower head (CORZiikk)
- Core ring area records (CORRii01)
- Core cell records associate with lower head (CORijjkk)
- Radionuclide settling (RNDS001)

MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Required Input Changes: Modification of Records

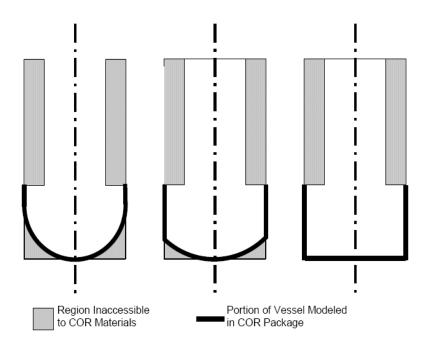
- COR00000: NLHTA (number of segments in curved lower head)
- COR00001: Removed DZLH (moved to COR00001A)
- COR00009: MDHMPO & MDHMPN (molten pool heat transfer model)
- CORZiikk: Core elevations moved as necessary to avoid small cell volumes
- CORTST01 (MELCOR input): Added fields 11 15 for molten pool model flags

MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Required Input Changes: Addition of New Records

COR00001A:

NUCLEAR/ENERGY & GLOBAL SECURIT

- Core Radius (RCOR)
- Lower Head Radius (RVLH)
- Vessel Radius (RVESS)
- Lower Head Geometry Type (ILHTYP)
- Lower Head Transition (ILHTRN)
- Vessel Thickness (DZRV)
- Lower Head Thickness (DZLH)
- COR00001B:
 - Transition Height (HLST)
 - Core Support Plate (HCSP)
- CORLHDkk for each lower head segment:
 - Segment number (IRE)
 - Temperature (TLH)
 - Segment radius (RADIUS)
 - Associated cavity control volume (ICVCAV)
- Added core cell records associated with region below downcomer, if modeled.
- Core cell records outside hemispherical lower head require NULL indicator
- CORRii00 core ring radii records
- Ag Release Model: CORCR0



MELCOR Input Deck Conversion from 1.8.5 to 1.8.6 Input Deck Converter

• Excel add-in designed to convert MELCOR 1.8.5 input decks to version 1.8.6

- Facilitate use of new lower head modeling in 1.8.6
- Upon completion of Excel worksheet, a text file is created allowing the user to include it in the RIF (Read Input File) sequencing of MELGEN
- The RIF file deletes appropriate records and creates new records in accordance with the user's inputs to the converter

NUCLEAR/ENERGY & GLOBAL SECURIT

Explore worksheet

NUCLEAR ENERGY & GLOBAD SECUR

- Values determined based on the input selected
- Elevations, radii, and segments are displayed with color-coding
- Cells with a red triangle provide a definition of the variable
- Users can only modify pre-determined values, shown in yellow
- Users may add additional elevations or delete elevations (original elevations can not be deleted)
 - If an elevation is split by adding an intermediate elevation, user is required to enter a temperature and cavity control volume number (ICVCAV)
- Required segments are calculated from the given ring radii and elevation information
 - A segment is required to exist at each ring intersection with the lower head and at each elevation intersection with the lower head
- A segment may be added by entering either the radius or elevation along with the associated temperature and ICVCAV

Create RIF text file

- Select Export RIF File on the Update Input Deck drop-down menu
- Default name of the file displayed ("LHMP.txt" appended)
- The file extension will always be .txt for compatibility within Excel
- Following the saving of the file, additional model parameters are displayed
 - Molten pool model flags
 - Control rod Ag release
 - Options
 - Recalculate control volumes: indicate whether the converter should recalculate the volume/altitude table for the control volumes in the lower head
 - Warning message generated in the RIF file when a calculated value differs more than 10% from the value listed in the original input
- Upon completion of the file creation and model flag selections, users may open and view the RIF file content from the message prompt
- Excel worksheet can be saved for future references

NUCLEAR/ENERGY & GLOBAL

Manual Edit

- The RIF file created must be added with a RIF statement at the end of the MELGEN input file
- User must enter or modify CORTST01 record within MELCOR input in accordance with the message provided at the end of the RIF file
- Ensure that no existing heat structures radiate to or from the deleted heat structures as indicated on HSRD records
- Run MELGEN / MELCOR (v.186)

Suggestions on strategies to define appropriate values for radii

-RCOR

- The value should correspond to the inside radius of the core shroud in a BWR or the core support barrel in a PWR. The suggested value is derived from the sum of the axial ring areas (ASCELA) input
- Often reasonably accurate for a carefully constructed BWR input, but for PWR the suggested value will usually be small since MELCOR 1.8.5 did not treat the peripheral barrel/baffle region of a PWR – the actual physical radius should be used

Suggestions on strategies to define appropriate values for radii

-RVESS

- The value should correspond to the radius of the lower cylindrical portion of the reactor pressure vessel
- Typically included as a cylindrical HS in existing decks and appropriate value of RVESS can be obtained from the inner radius of that structure

Suggestions on strategies to define appropriate values for radii

- RVLH

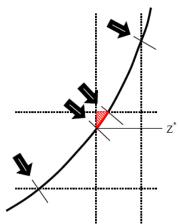
- The value should correspond to the radius of the interior surface of the lower head
- The value must not be less than RVESS and must not intersect the cylinder above HLST

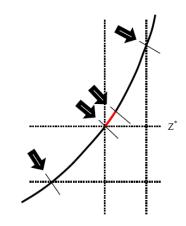
Steps involved in modeling the peripheral region of a PWR

- 1. Delete the heat structures that model the core shroud and replace them by component SH in the outermost occupied ring of cells; masses, temperatures, hydraulic diameters, and areas for SH may be obtained from the original edit for the HS they replace.
- 2. Add formers represented by component FM; formers will need to be included in each core levels above support plate.
- 3. Redefine the core support vessel as the radial boundary for the COR package using CORZjj02 records and add HSCCCC004 records to specify a dT/dz boundary fluid temperature option for the inner surfaces; this may require subdividing the heat structure so as to have a separate segment for each elevation in the core.

Steps involved in modeling the peripheral region of a PWR (Continued)

- 4. Include the bypass region in COR input for appropriate cells; this may require re-adjusting the volume/altitude table(s) for the bypass volume(s) so as to match the elevations in the COR package.
- 5. If the core flow blockage model was invoked in the original input deck (FLnnnBk), replace option "AXIAL" by "AXIAL-C" for the channel of the ring that includes the bypass and replace option "RADIAL" by "RADIAL-C" for flow between this ring and the ring inside it. It is also desirable to add a flow path or paths between the channel and bypass in that ring to represent failure of the core shroud with a flow blockage option of "CORE-SHROUD"




Input Deck Converter for MELCOR 1.8.6 Important Considerations (1)

Small cells and/or lower head segments

- Occurs when the surface of the lower head passes close to the "corner" of a core cell
- Computational problems may arise (more likely from a small core cell volume than from a small lower head segment)
- The cleanest solution is to revise the elevation so that the head passes through the cell corner
 - Requires far fewer other input changes than reducing the inner ring radius
 - No automated way available within the converter

Tiny cell volume

Tiny cell removed by lowering elevation Z*

Input Deck Converter for MELCOR 1.8.6 Important Considerations (2)

• Elimination of Heat structures that represented the shroud can eliminate deposition surfaces required by the RN package; additional input on RNDSXXX and RNSETXXX may be needed

Removing lower head segments

- Can be eliminated by reducing NLHTA by one and by deleting the CORLHDii record that specifies its outer radius
- When an elevation is manually changed, the following modifications are also necessary
 - Changes to radial cell boundary areas (ASCELR) for all cells in the two affected rings
 - Changes to the effective axial flow area (AFLOWC) for all affected partial cells
 - Changes to masses and surface areas of any components (e.g., CRGTs) in the lower plenum
 - Changes to volume/altitude tables in the relevant CVH control volumes

Command line: 2XConverter fname –arg1 -arg2

NUCLEAR/ENERGY & GLOBA

Argument	Description		
-OnlyUserNumber	Use 186 object number as new object name,i.e. CV128 becomes '128'		
-UserNumber	Use 186 object number as new object name,i.e. CV128 becomes 'CV128'		
-186Name	Use 186 object name		
-NoMerge	Do not merge 2.1 input into 186 input decks		
-CommentOld	Converter will include the 186 input records (commented out) in the new input		
-DEF	When using DEF application, runs MELCOR from converter restart		
commiss	Sandia National Laboratories		

Subdividing Decks (1)

- The INCLUDE directive includes the contents of one input file in another
 - Simple case

! filename: _simple.inp MEG_OUTPUTFILE SIMPG.OUT MEL_OUTPUTFILE SIMP.OUT MEL_RESTARTFILE SIMP.RST NCYCLE 0 PLOTFILE SIMP.PTF ...

INCLUDE simple.gen INCLUDE simple.cor ! filename: simple.gen Program MELGEN ...

END Program MELGEN

! filename: simple.cor Program MELCOR

```
END Program MELCOR
```

• simple.gen and simple.cor can each contain INCLUDE directives

Subdividing Decks (2)

- Many users split MELGEN input for large problems • into several files
 - Makes it easier to find specific input; allows reuse of pieces for differing scenarios or similar plants

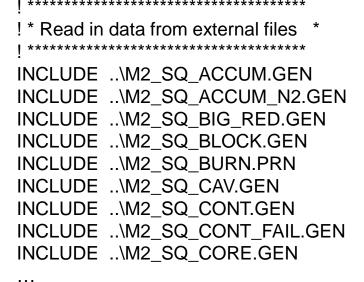
! filename: simple.gen Program MELGEN	! filename: Vessel.gen
5	
! Comments, model pedigree EXEC_INPUT	! filename: Loops.gen
EXEC_TITLE 'Simple Case'	
	! filename: Core.gen
INCLUDE Vessel.gen	
INCLUDE Loops.gen	
INCLUDE Core.gen	! filename: ECCS.gen
INCLUDE ECCS.gen	
INCLUDE Plots.gen	
	! filename: Plots.gen
END Program MELGEN	

Subdividing Decks (3)

- MELGEN input for a given package can also be split up in MELCOR 2
 - Parts may be in more than one file, and/or in more than one place in a file
 - Package specification is required in each case

```
! filename: Vessel.gen
...
CVH_INPUT
CV_ID 'Lower Plenum' 120
...
FL_INPUT
FL_ID 'Core Inlet' 117
...
! filename: Loops.gen
...
CVH_INPUT
CV_ID 'Hot Leg A' 230
...
FL_INPUT
FL_ID 'Hot Nozzle A' 231
...
```

 All input for any one object (CV_ID, FL_ID, etc.) must be grouped together



Converter Retains Data Structure of Original Deck

- Recent modifications to the Converter will preserve input deck file structure
 - Part of the February 2008 MELCOR 2.1 version
 - Can be disabled on input
- Last step in Converter procedure reads original input files and substitutes new input objects for old objects
 - All records for a particular object (i.e. control volume) appear where object is referenced in original deck (CVnnn00 record)

Additional comments added by converter

Modifications to MELCOR 2.1 for Sensitivity Coefficients

- In MELCOR 2.1 (Sept 08):
- All Sensitivity Coefficients for a given package must be entered as table

COR_INPL	JT				
 COR_SC	3	! N 1 2 3	SCnumber 1020 1504 1600	Value 60.0 0.1E-04 1.0	Index1 1 1 1

• There can be at most one such table in MELGEN input and one in MELCOR input

Modifications to MELCOR 2.1 for Sensitivity Coefficients (2)

- In MELCOR 2.1 (Feb 09):
- A third field on the COR_SC card will allow multiple tables

COR_INPL	JT					
 COR_SC	2	Table 1 2	21 1020 1504	60.0 0.1E-04	1 1	
 COR_SC	1	Table 1	e 2 1600	1.0	1	

- New field is used to differentiate tables for Allowreplace
- Currently implemented for all SC tables, valve tables, and pool scrubbing tables.

December 2008

September 2008

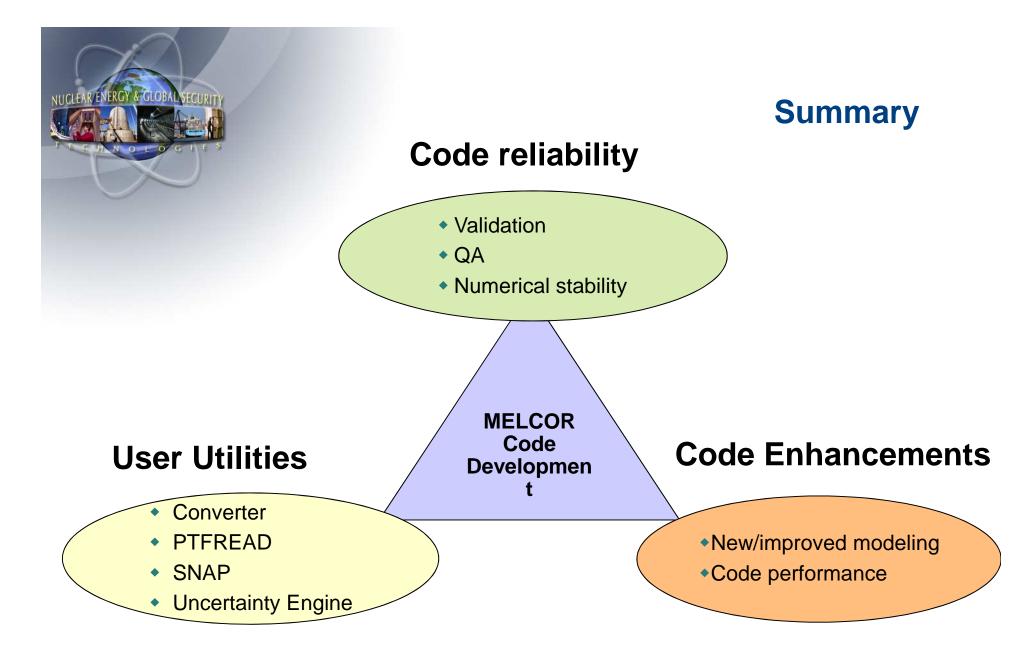
		positioned as i	n
•		original input	
•		U 1	!* Lower Vessel Wall - Core level 1
•	!* 103 - Next HS data ***********************************	****	! * ! * Description from S/R5 Model HS 5062
•	HS_ID 'HS32001-LOWERPLE' 32001 ! 186 name: LOWERPI	LENUM	!* Inner Radius = 2.2403 m Comments
•	HS_GD CYLINDRICAL YES ! Type of geometry, initialization	, Steady-state	!*Outer Radius = 2.3816 m!*Inner Dhyd = 0.701 mfrom original
•	HS_EOD 0.1445 1.0 ! HS Elevation and Orientat	ion Data	!* DZ = 0.523 input
•	HS_SRC NO ! No power source		! * NODES CYL INPUT W4(I)
•	HS_ND 4 INXVALU NIXVALUE TEMPIN MATN	AM	HS_ID 'HS32001-LOWERPLE' 32001 ! 186 name: LOWERPLENUM
•	1 1/0.22403000E+01/0.56083727E+03 'STAINLESS-S'	TEEL'	HS_GD CYLINDRICAL SS ! Type of geometry, Steady-state
•	2 2 0.22874000E+01 0.55612846E+03 STAINLESS-S		initialization
•	3 3 0.23345000E+01 0.55149002E+03 STAINLESS-S	TEEL'	HS_EOD 0.1445 1.0 ! HS Elevation and Orientation Data
•		eady State	HS_SRC NO ! No power source HS_ND_4TNXXALU NLXVADUE TEMPIN MATNAM
•		nperatures to	1 1 2.2403 - 'STAINLESS-STEEL'
•	-	calculated	2 2 2.2874 - 'STAINLESS-STEEL'
•	HS_LBP INT 0.50000000E+00 0.5000000E+00		3 3 2.3345 - / 'STAINLESS-STEEL'
•	HS_LBT 0.10000000E+03 0.10000000E+03 0.10000000E+	+01	4 4 2.3816
	0.10000000E+01	re readable	HS_LB CalcCoefH8 'CV320-LOWER-PLEN' YES HS_LBP INT 5.E-01 5.E-01
•			HS_LBT 100.0 100.0 1.0 1.0
•		matting	HS_LBS 1.0 0.701 0.5230
•	HS_RB CoefTempTF 'TF10-PIPE INSULA' 'CV1-CAVITY'	YES	HS_RB CoefTempTF 'TF10-PIPE INSULA' 'CV1-CAVITY' YES
•	HS_RBP EXT 0.5000000E+00 0.5000000E+00		HS_RBP EXT 5.E-01 5.E-01
•	HS_RBT 0.10000000E+03 0.1000000E+03 0.1000000E 0.1000000E+01	+01	HS_RBT 100.0 100.0 1.0 1.0 HS_RBS 7.8262 1.0 0.5230
•	HS_RBS 7.8262 1.0 0.5230		HS_FT OFF
•	HS_FT OFF		

Records

NUCLEAR/ENERGY

& GLOBA

HS_IP_'HS32002-LOWERPLE' 32002 ! 186 name: LOWERPLENUM



Known Converter Issues

Problem	Diagnostic	Solution
NC gas used as HS material	Error on card HS_ND for Heat Structure 'HSName' THE MATERIAL NAME HELIUM IS NOT FOUND	Add user-defined material properties for NCG to 1.8.6 input
No Steady State initialization for 1.8.6	ERROR IN SUBROUTINE HSSTDY/HSRUN2 TEMPERATURE CONVERGENCE FAILURE FOR HEAT STRUCTURE 107: TEMPERATURE ERROR = 1.157E-02	Relax convergence criterion in 1.8.6 deck, i.e., sc04051 4051 3.0e-2 2 Reset convergence criterion in converted deck
Problem when Vol/Alt table out of sequence, i.e., cv55000 'CL1 ACC N2' 2 1 9 cv550B2 3.4200 0.0000 cv550B1 8.0589 38.2300	Control volume CV550-CL1 ACC N2: ALTITUDES ARE NOT MONOTONE INCREASING Z= 0.8059E+01 V= 0.0000E+00 Z= 0.3420E+01 V= 0.0000E+00	Manually re-order the volume altitude table for now. May have permanent solution in February

