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Zusammenfassung

Seit der Postulierung der ber�uhmten `unsichtbaren Hand' von Adam Smith vor
200 Jahren haben �Okonomen eine ambivalente Haltung gegen�uber Wettbewerbs-
gleichgewichten. Einerseits ist es das grundlegende Konzept der Marktwirtschaft
und intuitiv einfach zug�anglich, andererseits stellt dessen formale Handhabung
grosse Probleme. So gelang z.B. erst in den dreissiger Jahren dieses Jahrhun-
derts ein erster Existenzbeweis von Gleichgewichten f�ur bestimmte Modelle. Aber
auch die algorithmische Handhabung selbst einfacher Modelle erweist sich vielfach
als schwierig und erfordert im allgemeinen ein genaues Verst�andnis der Modell-
Strukturen.

Von den zahlreichen M�oglichkeiten, Wettbewerbsgleichgewichte formal zu be-
handeln, wird in dieser Arbeit der Fokus auf Agenten und deren Reaktion auf
Preissignale gelegt. Dabei kann ein Agent je nach Situation verschiedenes re-
pr�asentieren: ein Konsument, ein Produzent, ein ganzer Wirtschaftssektor, eine
geographische Einheit (Land), usw. Bei gegebenem Preis ist die Reaktion der
Agenten de�niert als Netto-Verkauf (Angebot minus Nachfrage, oder Export mi-
nus Import), was summiert �uber alle Agenten als Exzessfunktion bezeichnet wird.

Ein Wettbewerbsgleichgewicht mit einem nichtnegativen Gleichgewichtspreis ist
dann gefunden, wenn entweder das Angebot und die Nachfrage �ubereinstimmen,
oder aber das Angebot gr�osser als die Nachfrage und zugleich der zugeh�orige
Preis Null ist.

Motiviert wird die Wahl, Wettbewerbsgleichgewichte auf der Ebene von Exzess-
funktionen zu betrachten, durch eine Reihe von spezi�schen Vorteilen: dazu
z�ahlen die breite Anwendbarkeit auf verschiedenste Gleichgewichtsprobleme, die
einfache Integrierbarkeit bestehender beliebig heterogener Agenten in ein �uberge-
ordnetes Gleichgewichtsmodell, oder die o�ensichtliche Parallelisierungsm�oglich-
keit in der Behandlung der einzelnen Agenten. Dabei stellten sich die zwei letzten
Punkte als entscheidend f�ur das in dieser Arbeit konkret betrachtete Energie-
�Okonomie-Modell MMmr (Markal-Macro multi-region) dar. Diese Vorteile d�urften
auch f�ur viele andere Modelle relevant sein. Allerdings erweist sich als einer
der gravierendsten Nachteile dieser Sichtweise die f�ur einen Konvergenzbeweis
der angewandten Algorithmen im allgemeinen nicht gegebenen Struktur-Voraus-
setzungen der Exzessfunktion.

Aufgrund der entscheidenden Vorteile werden in dieser Arbeit zwei Heuristiken
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entwickelt, die das Gleichgewichtsproblem basierend auf der Exzessfunktion l�osen.
Zum einen ist das ein Schnittebenenverfahren, welches im Rahmen von Va-
riationsproblemen diskutiert wird, und zum anderen ein Fixpunktverfahren. Ein
Beitrag dieser Arbeit �ndet sich dabei in der Diskussion der Monotonie der
Exzessfunktion, welche sich als zentral f�ur die Konvergenz des ersten Verfahrens
heraustellt. Weiter wird die Behandlung der Unbeschr�anktheit der Lagrange-
Funktion in gewissen F�allen untersucht. Diese Unbeschr�anktheit tritt bei der
Dekomposition des Optimierungsproblemes auf, welches dem Fixpunktverfahren
zugrundeliegt. Als erstes interessantes empirisches Resultat erscheint dabei die
Robustheit des Fixpunktverfahrens, sofern eine spezi�sche primal-duale Beziehung
zwischen den zwei Verfahren ausgen�utzt wird.

Um Algorithmen sinnvollerweise einzusetzen muss sichergestellt sein, dass eine
Gleichgewichtsl�osung �uberhaupt existiert. In einer vergleichenden Diskussion
werden verschiedene Beweisstrategien mit einigen Verallgemeinerungen und Er-
g�anzungen f�ur die Existenz eines Gleichgewichtes einander gegen�ubergestellt.
Eine davon wird schliesslich an MMmr angewandt.

Der mehr �okonomisch ausgerichtete Teil der Arbeit beginnt mit einem Exkurs
zu Energie- �Okonomie Modellen unter dem Gesichtspunkt von CO2 Emissions-
Beschr�ankungen. Diskussionsbeitr�age �nden sich hier im Bereich des `burden-
sharing' und der Implementation von CO2 Emissions-Zerti�katen.

Aufbauend auf nationalen Energie- �Okonomie Modellen (Markal-Macro) werden
unterschiedliche Konzepte zur Modellierung von CO2 Emissions-Zerti�katen vor-
gestellt. Diese werden einerseits zur Integration der nationalen Markal-Macro
Modelle im Mehrl�andermodell MMmr benutzt. Andererseits werden die Konse-
quenzen der unterschiedlichen Zerti�kats-Modellierung in diesem Kontext auch
analysiert.

Beruhend auf Daten von Schweden, den Niederlanden und der Schweiz wurden die
zwei entwickelten Heuristiken schliesslich an MMmr erfolgreich getestet. Vorbe-
haltlich der bei Modellrechnungen zu machenden Relativierung der numerischen
Resultate ergeben sich doch einige interessante �okonomische Einsichten. So er-
scheint der auf das Jahr 2000 diskontierte Preis f�ur solche Zertikate umgerechnet
bei etwa 20 Rappen pro Liter Treibsto� zu liegen, wenn eine 40%-ige Abnahme
der Emissionen bis ins Jahr 2040 vorgegeben wird. F�ur dieses Szenario liegen die
Verluste des BNP (Brutto-Nationalprodukt) im Bereich von 2% gegen�uber einem
Referenz-Szenario ohne Emissionsbeschr�ankung. Diese Verluste k�onnen um etwa
einen F�unftel verringert werden, wenn statt �xen l�anderweisen Emissions-Be-
schr�ankungen handelbare Zerti�kate eingef�uhrt werden. Bemerkenswert ist auch
die l�anderweise unterschiedliche Verteilung der Verluste gemessen am BNP. Da
diese Verteilung der Verluste durch die Erstausstattung mit Zerti�katen direkt
steuerbar ist, k�onnen solche Modelle bei der Aushandlung der Erstausstattung
sowie m�oglicher Transferleistungen eine wichtige Entscheidungshilfe leisten.



Summary

Since Adam Smith postulated the `invisible hand' 200 years ago, economists
have had an ambivalent position towards competitive economic equilibria. On
the one hand it is the fundamental paradigm of the market economy system
and intuitively easy to understand. On the other hand its formal treatment
poses considerable di�culties. The �rst proof of existence for certain models
was possible only in the 1930's; but the algorithmic treatment of even simple
models has often proved to be hard due to the need of an accurate insight into
the concrete model-structure which can be hard to obtain.

There are various ways to formalize equilibria; in this work equilibria are formal-
ized through the reaction of economic agents to price signals. Here `agent' is used
to denote di�erent things, depending on the context: a consumer, a producer,
a whole economic sector, or a geographic unit like a country, etcetera. The `re-
action' of an agent is de�ned as the net selling (supply minus demand, export
minus import) which is determined by price. The summing of the reaction of all
agents is called (market) excess.

An equilibrium with non-negative price is found when either supply equals de-
mand or supply exceeds demand and the corresponding price is zero.

The choice to study equilibria on the level of the excess-function was motivated by
a number of speci�c advantages including its broad applicability to di�erent eco-
nomic equilibrium problems, its simplicity of integrating existing and arbitrarily
heterogeneous agents in an overall equilibrium model, and its possibility to treat
agents in parallel. For MMmr (Markal-Macro multi-region), the energy-economy
model studied in this work, the last two advantages are of decisive value. A se-
rious disadvantage of this excess-based view is the possible lacking of structural
properties of the excess-function which are required for proving convergence of
related algorithms to equilibria.

The above mentioned advantages, however, necessitated the development of two
main heuristics to solve the equilibrium problem based on the excess-function
approach. The �rst, the Cutting Plane Method (CPM), is derived from a for-
mulation of the equilibrium problem as a Variational Inequality Problem (VIP).
The second heuristic is a �xed point method.

Contributions to the solution of equilibrium problems include the mathematical
analysis of monotonicity of the excess-function, the clari�cation of the central
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role of monotonicity when applying CPM, and the treatment of unboundedness
of the Lagrangian-function in some cases. This unboundedness appears in the
decomposition of the optimization problem which underlies the �xed point prob-
lem. Another contribution is the discussion and extension of di�erent strategies
to prove the existence of an equilibrium. One of these strategies is �nally applied
to MMmr.

One of the study's empirical result is the robustness and convergence of the �xed
point method when a speci�c dual relationship to the VIP is utilized.

The economically oriented part of this study starts with a discourse upon energy-
economy models from the perspective of CO2 emission bounds. Speci�c attention
is given to burden sharing and the implementation of CO2 emission-permits.

Based on national energy-economy models (Markal-Macro), di�erent possibilities
to model CO2-permits are developed. First, the permits are used to integrate the
national models in the international model MMmr. Second, the consequences of
the di�erent permit strategies are analyzed.

Using data from Sweden, the Netherlands and Switzerland, the two heuristics
are �nally successfully tested. Even though the resulting numbers must be inter-
preted cautiously, some interesting economic trends can be observed. Assuming
a CO2 emission scenario which reduces linearly the emission by 40% from 2000
to 2040, the average permit price is calculated to be 14 US cents per liter of fuel
if discounted back to the year 2000. Furthermore, the GNP-losses are around 2%
compared to a reference case without emission bounds. In our model these losses
can be reduced by one �fth if tradable permits instead of �xed national emission
bounds are introduced. Signi�cant economic di�erences were observed between
nations. Because the distribution of gains and losses can be in
uenced directly by
the initial endowment with permits, models like MMmr can be useful as a decision
support tool when initial endowments or transfer payments are negotiated.



Introduction

This study is motivated by an ecological concern: The rise of global mean temper-
ature due to Carbon Dioxide emission. It investigates a possible strategy which
could be used to reduce the level of this harmful emission.

CO2 is widely recognized today as the single most in
uential greenhouse gas
(GHG) emitted by human activities, and is therefor considered to be the main
culprit in the observed rise of global mean temperature. Large sudden changes in
the global climate seem to have happened regularly in prehistoric times and are in
that sense part of the ecological system `earth'. However, the great complexity of
human society today makes mankind more vulnerable and sensitive economically
and socially to this climatic change, and unfortunately, the less developed the
country is the more it stands to su�er.

Under these circumstances politicians and decision makers must grapple with a
number of dilemmas; for example, what abatement or mitigation strategies should
be implemented if costs occur today but `revenues' (avoidance of damage) are
uncertain and might occur in a later date? And further, which of these strategies
are politically viable, cost e�cient and e�ective? What e�ects may have the
implementation of such strategies on international equity and burden-sharing?

One of the strategies which has recently grown in popularity both economically
and politically is tradable CO2 emission permits. As a CO2 abatement instru-
ment emission permits are e�ective, cost e�cient, and allow direct negotiation of
burden-sharing by means of initial permit endowments.

The focus of this study is to solve a competitive economic equilibrium problem
(EEP) resulting from international trade of CO2 permits. The equilibrium prob-
lem is formalized using models representing the national economies called agents.
Schemes which integrate various agents in an overall equilibrium framework are
therefor investigated. Mathematically, agents are treated as oracles, which, given
a price signal, return the resulting excess of supply minus demand of the goods
traded.

While such an oracle-based perspective is attractive for model-builders who are
free to design any kind of agents in any kind of modeling environment, its math-
ematical treatment presents di�culties. What mathematical structures can be
exploited to solve such an agent-based equilibrium problem?
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To date, exact methods can be roughly classi�ed into two groups. On the one
hand the �xed point based methods (see [33, 99]) and on the other hand a variety
of methods which are usually based on a reformulation of the equilibrium problem
as a variational inequality problem (VIP) or nonlinear complementarity problem
(NCP), see [47, 81].

While �xed point methods require little mathematical structure to hold, and thus
can in principle solve an equilibrium problem given by a set of arbitrary agents,
their theoretical and practical performance is not convincing. These weaknesses
are considerably worsened when the evaluation of an agent is costly. The second
group of methods utilize the problem's structure to a larger extend and therefore
exhibit, as a rule, a superior performance. But, being tailored for speci�c agent
structures they can not be applied when agents are only given by an excess-
oracle; or, in Harker's words [46], `CGE-like models1, or any numerical approach
to equilibrium computation, su�ers from the curse of speci�city.'

Taking into account those di�culties, heuristic methods can be attractive. Two
heuristic methods are presented here, a �xed point based and a VIP-based method,
which share a certain dual relationship. Both give convincing performance in
practice for our speci�c model and are also applicable to a wide range of dif-
ferent models. Importantly, both concepts strongly support the integration of
arbitrary agents into an overall equilibrium framework without the requirement
of a single modeling environment or a reformulation of the agents. In that sense
both concepts can be useful tools in a decision support system where varying
agents can be easily integrated and thereby a sensitivity analysis on the level of
agent-models can be performed. However, while agents' integration for the VIP-
based approach presents no di�culties, integration for the �xed point approach
requires decomposition. Decomposition is used here in reverse, for integration
and not for subdivision, and is crucial for the integration of agents, without their
reformulation, in the �xed point based approach.

One important virtue of the VIP-based heuristic method is that if the excess-
function is monotone, i.e. ful�lls a structural assumption, then the method prov-
ably yields a solution. And furthermore, as stated by the theory of economics,
monotonicity is likely to hold for economically reasonable agents.

The study starts with a general, theoretical exposition and moves in the subse-
quent chapters into a more speci�c discussion of the concrete equilibrium model
`Markal-Macro multi-region' MMmr.

Chapter 1 introduces the basic de�nitions related to economic equilibrium prob-
lems and formally links them to MMmr. Next it formulates a speci�c VIP as the
�rst approach for treating equilibrium problems.
Chapter 2 discusses strategies of proving the existence of an equilibrium. One
strategy will be used later to actually prove the existence of an equilibrium solu-
tion of MMmr. Another strategy underlies the second approach for treating EEPs

1Computable General Equilibrium



xix

called `conceptual Negishi algorithm'.
Taking up the VIP from Chapter 1, Chapter 3 addresses the notion of monoto-
nicity, and introduces thereby two algorithms for solving the VIP.
Similarly Chapter 4 builds on Chapter 2; it presents two Negishi-algorithms and
discusses the resulting decomposition problem.
As a conclusion to the previous two chapters a qualitative comparison between the
algorithms is given in Chapter 5. The comparison is extended by two represen-
tative advanced algorithms from the literature for solving equilibrium problems,
thereby clarifying the advantages and disadvantages of the di�erent equilibrium
solution methods.
This mathematical focus is dropped in Chapter 6 where some economic back-
ground to emission permits and related energy-economy models is given.
Chapter 7 is devoted to the construction of MMmr and to the analysis of di�erent
aspects of introducing emission permits.
Finally, the results of applying the MMmr-model to data from Sweden, the Nether-
lands, and Switzerland are presented in Chapter 8.

The appendix discusses some technical background. It starts in Appendix A with
a brief compilation of the Karush-Kuhn-Tucker (KKT) theory and an introduc-
tion to VIPs.
Appendix B presents an alternative approach for the proof of the existence of a
solution for EEPs based on an up-to-date view of VIP.
Appendix C introduces the models, Markal and Macro, which appear in the re-
gional agents of MMmr.
The concrete proof of an equilibrium for MMmr is given in Appendix D.
Implementation details of the algorithms are presented in Appendix E.
An empirical comparison of the algorithms discussed in this work appears in
Appendix F.

For the mathematically inclined reader Chapters 1{5 together with Appendix B
are of more relevance. Economists may �nd Chapters 6{8 more rewarding, and
politically oriented readers may want to focus solely on Chapter 8.

A �nal word on the burden of notation is in order. In principle the notation
is designed to meet the speci�c needs of the di�erent sections. The more eco-
nomically oriented sections use more the speci�c economic notation, whereas the
mathematical sections obey the notation of corresponding mathematical �elds.
As a consequence, the same abbreviation can designate di�erent objects in di�er-
ent sections. Notational di�erences, however, are always made explicit. Among
the notational conventions in this work the following should be observed:

(i) Let x be a vector with components xi; if such a component is itself a vector, a
scalar component is denoted by xik; if x is build up by the components x1; : : : ; xn
we write for the corresponding vector x = (x1; : : : ; xn) and make no notational
di�erence whether the parts xi are vectors or scalars. Particularly, the usual
compound, x = (xT1 ; : : : ; x

T
n )

T for vectors xi, is simpli�ed to x = (x1; : : : ; xn).

(ii) Vector relations are always meant component-wise, consequently addition and
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subtraction of vectors happen also component-wise.

(iii) Sequences fxng are both symbolized by curly brackets and a superscript,
e.g. n, omitting the subscript `n 2 IN'; convergence to a point x is symbolized by
a simple arrow, xn ! x, dropping any `n!1'; there are, however, rare instances
where a superscript has a di�erent meaning, so as in the initial endowment x0r
of region r, or in the trivial case of a power, e.g. x2, but all these di�erences are
clear from the context and do not appear mixed.

(iv) Avoiding the usual mathematical sloppiness, we di�erentiate between objects
like x and x(p); while the former is any quantity, the latter is a map with argument
p. Such seemingly confusing notation is used where a semantic relation between
x and x(p) is emphasized; for example, while xr denotes a variable of region r,
xr(p) denotes the set of xr where the utility is maximal for a given price p.

(v) Other basic notations include the following. IRm
+ denotes the set of m-

dimensional real vectors with non-negative components (� 0); [a; b] is the closed
interval from a to b; if round brackets are used the corresponding boundary point
does not belong to the interval set, e.g. [a; b) = fx j a � x < bg; set designators
stand for the whole set, e.g. T in t 2 T , as well as for the last element in the set,
e.g. t 2 f1; : : : ; T � 1g where t gets all values of T but the last; the cardinality
(number of elements) of a set T is written jT j.
(vi) rk denotes the di�erentiation operator applied k times where, as usual, the
exponent `1' is dropped. The map to which rk is applied may be single or vector-
valued. If the map depends on a vector-variable x but the di�erentiation is done
only with respect to a subset �x of components of x, we write rk

�x.



Chapter 1

Vor dem Gesetze steht ein Türhüter. Zu diesem Türhüter
kommt ein Mann vom Lande und bittet um Eintritt in das
Gesetz. Aber der Türhüter sagt, dass er ihm jetzt den Ein-
tritt nicht gewähren könne. Der Mann überlegt und fragt
dann, ob er also später werde eintreten dürfen. “Es ist
möglich”, sagt der Türhüter, “jetzt aber nicht”. Da das
Tor zum Gesetz offensteht wie immer und der Türhüter
beiseitetritt, bückt sich der Mann, um durch das Tor in
das Innere zu sehen. F. K. [58]

The Name of the Game:
Economic Equilibrium Problems
(EEP)

The chapter is organized as follows. In Section 1.1 a simple formalized econ-
omy, including a �nite set of producers and consumers, is introduced; it follows
essentially Negishi's [82] exposition, relaxing to some extend its assumptions,
and de�nes the notion of welfare, Pareto optimality and economic equilibrium.
While those de�nitions are used throughout this work, the Assumptions 1.1 will
be needed in Section 2.2 when proving the existence of an economic equilibrium.
Here a reference to the excellent monograph Theory of Value by Debreu [18] is
apposite, where the concepts and assumptions used by Negishi are discussed more
in depth.

Section 1.2 brings the general notation into formal correspondence with the ba-
sic structure of MMmr, the concrete energy-economy model studied in this work.
Di�erent to the above abstract economy the production is here part of the `con-
sumer'.

We continue by a brief outlook on MMmr in Section 1.3.

In Section 1.4, �nally, we present possible equivalent formulations of the rather
abstract equilibrium conditions as complementarity problem (NCP), variational
inequality problem (VIP) and �xed point problem (FPP). They will be used in
following parts of the work. Namely, (VIP) is the problem solved by the cutting
plane methods discussed in Chapter 3.

Contributions of this chapter include the Sections 1.2 and 1.3.

A �nal notational remark is in order. The classical economic theory considers
usually consumers and producers. We stick to this habit when presenting fun-
damental economic concepts. However, from a more general point of view they
can be simply called (economic) `agents'. In the concrete application MMmr, �-
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nally, we talk of regions. Following these di�erent standpoints we will use the
appropriate notion in the di�erent parts of this work.

1.1 A World of Producers and Consumers

A simpli�ed economy can be thought of as a set of consumers (e.g. people) maxi-
mizing their utility and producers (e.g. �rms) maximizing their pro�t. The pro�t
in turn goes back to the consumers depending on the share of ownership.

De�nition 1.1 (cf. [82])

I (�nite) set of consumers;
J (�nite) set of producers;
m dimension of the space of goods;
xi 2 IRm

+ consumption of consumer i;
x0i 2 IRm

+ n f0g initial endowment of consumer i;
yj 2 IRm production vector of �rm j;
Fj(yj) : IR

m ! IR production function of �rm j;
�ij � 0 pro�t share of �rm j distributed to consumer i;
Ui(xi) : IR

m
+ ! IR utility of consumer i with consumption vector xi;

p 2 IRm
+ price vector.

Note that by de�nition x and p are non-negative. The production function char-
acterizes the set of possible (feasible) production vectors, that is, yj is a feasible
production of �rm j if and only if Fj(yj) � 0. The pro�t share ful�lls

P
i �ij = 1.

As mentioned in the introduction we abbreviate x := (x1; : : : ; xI) or U(x) :=
(U1(x1); : : : ; UI(xI)); furthermore, vector-relations are meant component-wise,
e.g. F (y) � 0 means F1(y1) � 0; : : : ; FJ(yJ) � 0. The quantity e := e(x; x0; y) :=P

i(x
0
i � xi) +

P
j yj is called excess (supply minus demand) and is de�ned for

any feasible (x; y). Later, based on optimal vectors (x(p); y(p)), a di�erent excess
de�nition e(p) will be given which is a function of the price p.

We make in this chapter the following assumptions:

Assumption 1.1 (cf. [82])

1. U(x) is once continuously di�erentiable, non-decreasing, strictly increasing
in at least one good, and concave;

2. F (y) is once continuously di�erentiable and quasi-concave;

3. 9y� : F (y�) > 0 and 0 <
P

i x
0
i +

P
j y

�
j ;

4. With Yj := fyj j Fj(yj) � 0g and Y :=
P

j Yj = fy j y =
P

j yj; yj 2 Yjg it
must hold
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(a) 0 2 Yj: possibility of no production;

(b) Y \ IRm
+ = 0: `negation of the land of Cockaigne' (no free lunch);

(c) Y \ (�Y ) = 0: irreversibility of the production process.

Let us brie
y comment these assumptions. Non-decreasing means x0 � x implies
U(x0) � U(x); U is strictly increasing in at least one component, if for each x � 0
and for all i 2 I there is k such that Ui(x

0
i) > Ui(xi) if x

0
i � xi and x

0
ik > xik.

The latter requirement is very modest, because otherwise we may have constant
utilities, for which trivial equilibria and welfare maxima can be given. Concavity
of the utility functions implies convexity of all level sets and can be interpreted
economically as non-increasing marginal utility.

The second assumption|quasi-concavity of F (y)|is equivalent with convex pro-
duction sets.

The third condition, sometimes denoted as Slater condition, is motivated by
mathematical reasons permitting to apply the theorem of Karush-Kuhn-Tucker
(KKT). At the same time it is one of the easier regularity conditions to be veri�ed
by economic arguments.

By the fourth condition we impose a reasonable economic behavior of the pro-
ducers.

As a �rst step to approximate the behavior of a real economy, it makes sense
to require that all consumers are simultaneously `optimal', e.g. are in a state
of maximal utility. Such a multiobjective maximization can be explicited by
assigning each consumer a weight �i � 0 and maximizing the sum of the weighted
consumer utility calling it welfare maximum.1

De�nition 1.2 (Welfare maximum, [82]) Given a normalized weight vector �i �
0,
P

i2I �i = 1, an allocation (x�; y�) is called a welfare maximum if it solves

max
X
i2I

�iUi(xi)

s.t.
X
i2I

xi �
X
i2I

x0i +
X
j2J

yj (no excess of demand) (1.1)

Fj(yj) � 0 8j 2 J (condition of production) (1.2)

9>>>>>=
>>>>>;

(1.3)

Note that the consumers are not restricted by an individual monetary budget;
only the overall demand is restricted by the total supply (1.1) and the feasibility
of production (1.2). Giving weights to the consumers implies a distribution, that
is, the share of the overall wealth given to a consumer is implicitly determined

1In the economic literature the notion of (social) welfare is more generally de�ned as a
monotone function W (U(x)) : IRm�jIj ! IR, that is, if U(x0) � U(x) we have W (U(x0)) �
W (U(x)).
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by his weight. To overcome this restriction, a more general concept called Pareto
optimality can be used to characterize the optimality of the state of an economy.
The idea is, if a consumer can be made better o� and everybody else does not
loose, then the former state can be improved, i.e. is not optimal. Reformulated
we have the following

De�nition 1.3 (Pareto optimal, [82]) An allocation (x; y) is called Pareto opti-
mal, if it satis�es (1.1) and (1.2), and if there is no allocation (x0; y0) satisfying
also (1.1) and (1.2) and for which U(x0) � U(x), U(x0) 6= U(x).

Assumption 1.1 implies that the set of welfare optima with � > 0 and the set of
Pareto optimal points coincide, cf. Theorem 2.4. Both the concept of welfare and
Pareto optimality do not consider explicitly prices, or, to state it di�erently, both
the wealth of consumers expressed by their initial endowment x0 and the scarcity
of di�erent goods expressed by pricing are not taken into account. Those lacks
are overcome in a state called competitive equilibrium. Here|given a price p|
all consumers maximize their utility subject to a budget, and all �rms maximize
their pro�t. The key concept lies in the balance of supply and demand, by which
the set of possible equilibria is restricted to an extend making even the existence
of one equilibrium questionable.

De�nition 1.4 (Competitive economic equilibrium problem, EEP, [82]) A vector
(x�; y�; p�) is called a competitive equilibrium if

(a) y�j solves for each �rm j 2 J

max p�Tyj
s.t. Fj(yj) � 0;

�
(1.4)

(b) given the budget Mi := p�Tx0i +
P

j �ijp
�Ty�j , x

�
i solves for each consumer

i 2 I
max Ui(xi)
s.t. p�Txi =Mi;

�
(1.5)

(c) p� � 0, e(p�) = e(x�; x0; y�) � 0 (no excess of demand over supply) and
p�i e

�
i = 0; i = 1; : : : ; m (equality of demand and supply for non-free goods).

The complementarity condition in (c) expresses that only scarce goods (ei(p
�) =

0) can have a positive price p�i > 0.

Welfare and economic equilibria have a close relationship; �rst note that both
are `economically e�cient' in the sense of equal marginal utility relations. Next,
on a formal level we can observe a sort of duality: On the one hand welfare
maxima always ful�ll the (overall) excess constraint (1.1) but not necessarily the
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(individual) budget constraints in (1.5); on the other hand, given an arbitrary (not
necessarily equilibrium) price p the maximization of the �rms (1.4) and consumers
(1.5) ful�lls the budget constraint but not necessarily the excess constraint. The
latter is exactly the condition for an equilibrium price. The relation between
economic equilibria and welfare will be discussed more in depth in Section 2.2.

1.2 Simpli�cation for Utility Maximizing Agents

The formalism presented in the preceding section can be simpli�ed if every �rm
belongs exactly to one consumer, i.e. 8j 2 J 9i 2 I : �ij = 1. Denote by
J i all �rms owned by consumer i. Then the next proposition states that the
utility maximization for all consumers subject to the production constraints of
the corresponding �rms is equivalent to the simultaneous pro�t maximization
of the �rms and the utility maximization of the consumers. Note that in the
following proposition the price p is an exogenously �xed parameter; to have a
proper (�nite) solution requires positiveness of certain components of p.

Proposition 1.1 Assume �ij = 1 if j 2 J i and zero otherwise, and let the sets J i
be a disjoint covering of J. Furthermore, let the prices for scarce goods be positive,
i.e., for all k for which there exists i 2 I such that Ui is strictly increasing in the
kth component we have pk > 0. Then (x�; y�) is a solution of

max Ui(xi)
s.t. pTxi = pTx0i +

P
j2Ji p

Tyj
Fj(yj) � 0 8j 2 J i

9=
; 8i 2 I (1.6)

if and only if y�j is a solution of (1.4) 8j 2 J and x�i is a solution of (1.5) 8i 2 I.

The proof uses the characterization of optima by Karush-Kuhn-Tucker, cf. Ap-
pendix A. Because Ui(xi) is strictly increasing in at least one good, we can
replace the budget constraint pTxi = pTx0i +

P
j2Ji p

Tyj in (1.5) and in (1.6) by

pTxi � pT (x0i +
P

j2Ji yj) � 0 and know that the corresponding multiplier in the
KKT-condition is positive. Choose any i 2 I; from Assumption 1.1 follows the
equivalence of the KKT-points and the optima for each of the three maximization
problems (1.4), (1.5) and (1.6). Thus it is su�cient to verify the equivalence of
the KKT-conditions of (1.4) and (1.5) with those of (1.6) for any i 2 I and all
j 2 J i, which are, respectively

�p� �jryjFj(yj) = 0

�j � 0

�
8j 2 J i (1.7)

for (1.4),

�rxiUi(xi) + �p = 0

� > 0

�
(1.8)
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for (1.5) and

�

2
6664
rxiUi(xi)

0
...
0

3
7775�X

j2Ji
�j

2
6664

0
...

ryjFj(yj)...
0

3
7775 + �

2
6664
p
�p
...
�p

3
7775 =

2
6664
0
0
...
0

3
7775

�j � 0 8j 2 J i
� > 0

9>>>>>>>=
>>>>>>>;

(1.9)

for the aggregated problem (1.6). Setting � = � and �j = �j� for all j 2 J i

yields the desired equivalence of (1.9) with (1.7) and (1.8).

Note that the non-negativity of x does not a�ect the proven equivalence.

1.3 Formal Link to Markal-Macro Multi-Region

(MMmr)

MMmr (Markal-Macro multi-region) considered in this work and presented in de-
tail in Chapter 7 has exactly the structure (1.6). The overall equilibrium model
integrates a set R of regions connected by trade of CO2 emission permits and
other goods. Dropping for convenience the regional index r (respectively i in
(1.6)) the utility of one region is de�ned as discounted sum of logarithms of
consumption

U(C) =
TX
t=1

dt � logCt

over a set T of time periods. The consumption is determined by the gross do-
mestic product (GDP) minus investment costs, which are subsequently speci�ed
by a set of constraints. The constraints|represented by F (y) � 0 in (1.6)|can
be divided into two parts: A small nonlinear part responsible for the aggregated
macro-economic structure, and a large linear part describing in detail the energy
related sector.

1.4 EEP as Variational Inequality Problem (VIP)

and Other Formulations

An economic equilibrium problem (EEP) de�ned in de�nition 1.4 can be charac-
terized in a more transparent way by using the notion of the excess map:
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De�nition 1.5 Let yj(p) and xi(p) be the set of solutions to (1.4) and (1.5)
respectively; then the excess map e(p) is de�ned by

e(p) :=
X
i2I

�
x0i � xi(p)

�
+
X
j2J

yj(p): (1.10)

Note that in general e(p) may be set-valued. Based on e(p) EEP is subsequently
formulated as generalized nonlinear complementarity problem (GNCP), general-
ized variational inequality problem (GVIP), and as generalized �xed point prob-
lem (GFPP). Here `generalized' designates the set-valuedness of e(p); to simplify
the notation, we drop the `G' for generalization in the rest of this exposition and
mean by e.g. VIP both GVIP and VIP, where the valuedness of e(p) is given by
the context.

As a direct consequence of De�nition 1.4 we �nd an equilibrium to be character-
ized by the following NCP:

�nd p� 2 IRm
+ such that 9� 2 e(p�) with � � 0;

�Tp� = 0:

�
(NCP)

This (NCP) can also be formulated as VIP, which is the basement of the VIP-
solution approach discussed in Chapter 3:

�nd p� 2 IRm
+ such that 9� 2 e(p�) with �T (p� p�) � 0 8p 2 IRm

+ . (VIP)

Here (NCP) and (VIP) are tags for the speci�c problems from above, while NCP
and VIP denote the corresponding class of problems. The equivalence of (NCP)
and (VIP) is proven in the following proposition.

Proposition 1.2 (cf. [61]) p� solves (NCP) if and only if it solves (VIP).

Assume p� solves (NCP), then for the corresponding � we have �T (p � p�) =
�Tp � 0 8p 2 IRm

+ , i.e. p
� solves (VIP).

Assume now p� solves (VIP); obviously we must have � � 0 due to �T (p�p�) � 0,
because for any �i < 0 we could otherwise choose a su�ciently large pi � 0
such that �T (p � p�) < 0. Let us check now complementarity; from the last
consideration we know �ip

�
i � 0, by setting p := p� except for pi = 0, we get

�T (p� p�) = ��ip�i � 0 or equivalently �ip
�
i � 0, thus �ip

�
i = 0 for any i.

As a third possibility we formulate EEP as a �xed point problem:

�nd p� 2 IRm
+ such that p� 2 PIRm

+
� (1l� e)(p�): (FPP)

By PIRm
+
we mean the orthogonal projection onto IRm

+ , and by 1l the identity map.
The structure of this �xed point problem will be discussed more in depth in
Section 2.1. Based on the characterization of projections given in Lemma A.7,
we have equivalence of (VIP) and (FPP).



8 Economic Equilibrium Problems (EEP)

Proposition 1.3 (cf. [23]) p� solves (VIP) if and only if it solves (FPP).

The de�nition of a solution p� to (VIP) is 9� 2 e(p�) such that �T (p � p�) �
0 8p 2 IRm

+ . By multiplying with �1 and adding p�T (p � p�) on both sides we
have the equivalent relation

p�T (p� p�) � (p� � �)T (p� p�) 8p 2 IRm
+ :

Applying Lemma A.7 yields equivalently p� = PIRm
+
(p� � �), and with � 2 e(p�)

we get �nally equivalence to p� 2 PIRm
+
� (1l� e)(p�):

In our practical problem MMmr, described in Chapter 7, e(p) is single valued
because the underlying problem has the structure (1.6) with a strictly concave
utility function. For this and because it simpli�es both intuition and proofs, we
will restrict ourselves in the following discussion mostly to single-valued operators.

Note that for economic problems with a scalar budget constraint like (1.5) or
(1.6) the excess map is homogeneous of degree 0, that is, e(�p) = e(p) 8� > 0.
This allows to restrict the feasible price set IRm

+ to the unit-simplex � which is
compact and de�ned by

� := fp 2 IRm
+ :

mX
i=1

pi = 1g; (1.11)

where the dimension m of the embedding space is chosen accordingly to the
problem.

Finally we should point to the aggregation level in the problem formulations
above. Instead of using the very aggregated excess map which hides the structure
of the underlying optimization problems, one might as well formulate the jIj+ jJ j
simultaneous maximization problems together with the no-excess condition (c)
in De�nition 1.4 directly as complementarity problem, and based on that also
as VIP and �xed point problem. The basic idea is to catch the maximization
problems in their respective Karush-Kuhn-Tucker systems of equations, cf. Garcia
and Zangwill [33], and then solve those systems of equations simultaneously.

Whereas from a mathematical and algorithmic point of view it is in general ad-
vantageous to work on a disaggregated level where more information is available,
the situation might be di�erent in practice like in case of our model, where such a
simultaneous formulation as set of equations or complementarity problem is not
available.



Chapter 2

Als der Türhüter das merkt, lacht er und sagt: “Wenn
es dich so lockt, versuche es doch, trotz meines Verbotes
hineinzugehen. Merke aber: Ich bin mächtig. Und ich bin
nur der unterste Türhüter. Von Saal zu Saal stehen aber
Türhüter, einer mächtiger als der andere. Schon den An-
blick des dritten kann nicht einmal ich mehr ertragen.”

F. K. [58]

Is There a Solution to EEP?

In 1874 Leon Walras presented in �El�ements d' �Economie politique pure ou Th�eorie
de la Richesse sociale [102] a formalization of general equilibrium theory; there
he argued that an economic equilibrium exists by stating that there is an equal
number of variables and equations in the underlying set of equations. Indeed,
it is easy to construct economic equilibrium problems which, having an equal
number of variables and equations, do not possess an equilibrium solution. It took
almost 60 years until 1935, when AbrahamWald [101] gave a �rst mathematically
satisfactory answer (for a thorough discussion see John [55]).

Later, in the early �fties, the proof of existence was given in the totally di�erent
setting of �xed point theory; this allowed the relaxation of some of the conditions
required by Wald, and at the same time made the proofs considerably easier.
Since then most strategies for proving the existence of equilibria use �nally a
�xed point argument. The adverse side of this elegant mathematics is its non-
constructive nature, i.e. it can not be used directly to actually �nd an equilibrium.

Ten years later Lemke [69] resolved this question partially by suggesting an al-
gorithm for solving bimatrix games. A more general approach was developed
by Scarf [95] another ten years later, which today is seen as a variant of `path-
following', cf. Zangwill and Garcia [104]. This constructive view in turn admit-
ted new variants to prove the existence of equilibria, and it is exactly such an
equation-based approach which will be used in the case of the MMmr-model. The
reason why an abstract �xed point theorem can not be directly applied is the
lack of structure in the excess function e(p).

The chapter is structured as follows. In Section 2.1 Kakutani's Fixed Point
Theorem is discussed and the obstacles in applying it to our excess-based problem
are clari�ed.

Based on the foundations of Chapter 1, Section 2.2 presents Negishi's approach
to the problem of proving the existence of a competitive economic equilibrium.
From Negishi's theory a general �xed point heuristic called `conceptual Negishi
algorithm' is derived, which will be detailed in Chapter 4.
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Section 2.3 discusses a path-following approach following Garcia and Zangwill
[33], which will be used in Appendix D to actually prove the existence of an
equilibrium of MMmr.

Let us also point to Appendix B, where an up-to-date VIP-based approach fol-
lowing Yao [103] is discussed. This yields on the one hand the Negishi-based proof
in Section 2.2 again, and makes on the other hand the proof of existence appli-
cable to a wider range of structural assumptions. Similar to the path-following
approach, the VIP under consideration does not rely on the aggregated excess
function e(p), but on a direct formulation of the optimality conditions of the
underlying maximization problems.

The contributions in this chapter are as follows. In Section 2.2 the original
assumptions used by Negishi [82] are relaxed, and based thereupon the existence
proof is given. In Section 2.3 the agents have a di�erent structure compared
to the discussion in Garcia and Zangwill [33], and furthermore the constraint
quali�cations are changed in order to make the concepts applicable to our model
MMmr.

2.1 Kakutani's Fixed Point Theorem

Consider a convex set C � IRn, denote by 2C the set of subsets of C and conse-
quently by a point-to-set map f : C ! 2C a map relating to each x 2 C a set
f(x) � C. Then we call x� a �xed point of f if x� 2 f(x�). Furthermore, f is
called convex if f(x) is convex for all x 2 C. Besides convexity we need a second
property called closedness to assure the existence of a �xed point.

De�nition 2.1 (Closedness, [30]) Let fxkg � C be any convergent sequence with
limit point x 2 C, xk ! x 2 C, and choose for all k 2 IN a yk 2 f(xk) such that
fykg � C is convergent in C, yk ! y 2 C. If for all such sequences fxkg and
fykg we have y 2 f(x), then f is called closed.

Furthermore, we also introduce the notion open:

De�nition 2.2 (Openness, [30]) Let fxkg � C be any convergent sequence with
limit point x 2 C, xk ! x. If for any y 2 f(x) we can choose for all k 2 IN a
yk 2 f(xk) such that fykg � C converges towards y 2 C, then f is called open.

A set-valued map which is both open and closed is called continuous. Interpreting
these properties, closedness inhibits a sudden `contraction' of the sets f(x) if x
varies slightly, whereas openness inhibits a sudden expansion.

A proof of the following �xed point theorem due to Kakutani (1941) can be
found e.g. in Heuser [49, p. 614], or in Garcia and Zangwill [33]. Its relevance for
mathematical economics can not be overestimated, and one of its applications is
presented in the next section.
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Theorem 2.1 (Kakutani's Fixed Point Theorem) Let C 2 IRn be a non-empty,
compact and convex set. If the map f : C ! 2C is nonempty, closed and convex,
then f has a �xed point in C.

To clarify what is essential for the existence of a �xed point, let us give the
following simpler but nevertheless equivalent

Theorem 2.2 (Brouwer's Fixed Point Theorem)1 Assume C � IRn is a nonempty,
convex and compact set. Then every continuous point-to-point map f : C ! C
has at least one �xed point.

Hence it is continuity of f together with convexity and compactness of C which
guarantees the existence of a �xed point. Let us brie
y outline the connection of
Kakutani's Fixed Point Theorem to the problem of existence of an equilibrium.
As stated in Proposition 1.3, the economic equilibrium problem EEP can be
formulated equivalently as �xed point problem using the map f(p) := P� � (1l�
e)(p), where P� denotes the orthogonal projection map onto the unit-simplex �, �
abbreviates the concatenation of maps, and (1l�e)(p) := p�e(p). If e(p) is single-
valued we have equivalence of continuity of the �xed point map f(p) and e(p) due
to the continuity of the projection P�. In view of (FPP), Proposition 2.2 together
with continuity of the excess map implies the existence of an equilibrium. In case
of a set-valued excess map we must have both convex values and closedness,
cf. Theorem 2.1. However, a projection of a convex set onto another convex set
does in general not produce a convex set, and hence the �xed point map f(p)
may be non-convex even if e(p) is convex for all p 2 �. Furthermore, even if
convexity could be assured closedness is a demanding property.

To enlighten the di�culties with closedness, following Flippo [30], let us look at
a single agent represented by a mathematical programming problem maxU(x)
subject to G(x) � b, where x, G(x) and b are vectors of appropriate dimension,
and where p is part of b. Denote by �(b) the feasible set map and by !(b) the
corresponding optimal set map. Our excess map can be understood as (part of)
!(b), and hence closedness of e(p) follows from closedness of !(b). The latter
is essentially given if both the objective U(x) and �(b) are continuous [30, The-
orem 2.1 and Corollary 2.1]. As mentioned above, continuity of the set-valued
map �(b) requires closedness and openness. While closedness of �(b) is basically
implied by a continuous G(x) [30, Theorem 2.3], openness requires a constraint
quali�cation like the one of Mangasarian-Fromovitz [30, Theorem 3.4].2 As dis-
cussed in [30], there is little hope to weaken those requirements, because they

1In Brouwer's original formulation C is the closed unit ball in IRn.
2Flippo [30] discusses only the case where solely the right hand side may vary. In order

to translate the consumers problem containing a budget constraint into such a framework,
both x and p must be treated as variable. In a second step the `variable' p is then equalized
to components of the right hand side b. Thereby the convexity of the budget constraint is
destroyed, and consequently [30, Theorem 3.1{3.3] can not be applied.
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are too strongly connected to a `well-behaved' optimization problem. This may
explain why proving existence of an equilibrium is usually not done by examining
the overall excess, but by studying some underlying mathematical structures.

In the next section, Negishi's successful application of Kakutani's Fixed Point
Theorem, based on an exploration of the structure of the agents, is demonstrated.

2.2 Negishi's Approach

This section is based on Negishi's proof for the existence of an equilibrium [82]
and requires the de�nitions and assumptions of Section 1.1. Compared to Negishi
we weaken some assumptions and modify the proofs accordingly. We start by a
direct consequence of Assumption 1.1 which guarantees the existence of a �nite
solution to both the consumer and producer problem. Moreover, we can conclude
that the set of solutions must be convex.

Lemma 2.3 ([82], Lemma 1) If Assumption 1.1 is ful�lled and if there is no
excess of demand over supply, i.e. e � 0, then the domain of x and y is nonempty,
convex and compact.

Applying this prerequisite we have under Assumption 1.1 almost equivalence of
Pareto optimal states and welfare maxima:

Theorem 2.4 ([82], Theorem 2) If Assumption 1.1 holds, then for any weighting
vector �� � 0 there is a welfare maximum represented by the utility vector U�.
Furthermore, for � > 0 an allocation is a welfare maximum if and only if it is
Pareto optimal.

Note that if either the feasibility sets are non-convex or U is non-concave, the
equivalence of welfare maxima and Pareto optimality is violated.

The following theorem relates equilibria to a subset of welfare maxima charac-
terized by the weighting vector �. Based on this relation a �xed point map is set
up and Kakutani's theorem can �nally be applied to prove the existence of an
equilibrium.

Theorem 2.5 ([82], Theorem 4) Let p correspond to the Lagrange-multiplier of
(1.1) in the welfare problem. Then

1. at any welfare maximum the conditions (a) and (c) of a competitive equi-
librium (De�nition 1.4) are ful�lled;

2. condition (b) in De�nition 1.4 is satis�ed if and only if 0 < �i = 1=�i, where
�i is the marginal utility of income of consumers, i.e. �i is the Lagrange-
multiplier of the budget constraint in the utility maximization problem (1.5)
of consumer i.
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Both claims can be shown by comparing the KKT-conditions of the underlying
optimization problems.

The equation �i = 1=�i is only given in this canonical setting, where the equilib-
rium price equals the dual multiplier p of (1.1). Obviously the welfare maximiza-
tion problem produces the same primal result for any scaling �� with � > 0, and
also the utility maximization problem is primal invariant with respect to a scaling
�p for � > 0. This is relevant for restricting the feasible set of � when applying
Kakutani's theorem below, but also in the practical implementation where the
relation �i = 1=�i is satis�ed only up to scaling.

In order to prove the existence of an equilibrium we have to sharpen Assump-
tion 1.1 slightly. This is necessary for two reasons. First we need a convex valued
and closed �xed point map to apply Theorem 2.1, which is achieved by assuming
concavity of F . Secondly we want each consumer to have a positive amount of
`money' to spend even if some (but not all) prices are zero. This is needed in
the proof of Theorem 2.6 to derive an equilibrium from a �xed point. Several
conditions can be considered implying a positive monetary endowment. Negishi
[82] presumes strictly increasing utilities (i.e. (rUi(xi))k > 0 8xi � 0, 8i 2 I
and 8k = 1; : : : ; m) together with x0i � 0, x0i 6= 0 and F (0) � 0, resulting in
a positive monetary endowment. But these assumptions are rather strong, be-
cause they imply p > 0 in any welfare solution (where � 2 �), which collapses
the complementarity and variational inequality problem to �nding a zero of the
excess map e(p). Here we impose the following relaxed assumptions:

Assumption 2.1

1. Fj(yj) is concave for all j 2 J.
2. There is a good k for which all utilities are strictly increasing, and for which

all consumers have a positive endowment.

The second condition is easily ful�lled if a good is introduced which represents
a monetary num�eraire and if each consumer is endowed with a (small) positive
amount.

Under Assumptions 1.1 and 2.1 all welfare maxima are equivalently saddle-points
of the Lagrange dual function

L(x; y; p; �;�) := �TU(x) + pT e(x; y) + �TF (y): (2.1)

The saddlepoint map  is de�ned as

 (�) := arg min
(p;�)�0

max
x�0;y

L(x; y; p; �;�) (2.2)

and is obviously a non-empty, convex-valued point-to-set map: given (p; �) �
0, maximization with respect to (x; y) appears in concave summands only, and
given (x; y), minimization with respect to (p; �) appears in linear, thus convex,
summands only.
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Theorem 2.6 (cf. [82], Theorem 5) Under Assumptions 1.1 and 2.1 there exists
a competitive equilibrium.

The proof is based on Kakutani's �xed point theorem; the underlying �xed point
map � : ( � k)! f( � k+1)g is constructed by a concatenation of three maps, where
the brackets f( � )g indicate set-valuedness:

(�k; xk; yk; pk)

 (�k): (extended) saddlepoint map

(�k; f(xk+1; yk+1; pk+1)g)
�: normalization of p

(�k; f(xk+1; yk+1; p0k+1)g)
�: upgrade of �k

f(�k+1; xk+1; yk+1; p0k+1)g

The extended saddle point map  di�ers from  in that it contains � but drops
�. The normalization map �(p) is de�ned by p 7! p=

P
i pi, and the upgrade map

� by

�i 7!
max(0; �i + p0T (x0i +

P
j2J �ijyj � xi))P

imax(0; �i + p0T (x0i +
P

j2J �ijyj � xi))
:

In the course of the proof it is shown that the denominator in the map � is
positive, and also � is well de�ned. Hence for all k 2 IN both �k and pk are in
the unit-simplex of appropriate dimension.

In order to apply Kakutani's �xed point theorem we �rst have to verify that � is
closed. We do this by exploiting that continuous (point-to-point) maps preserve
closedness, and the Cartesian product of two closed maps is closed (this is always
on the background of IRn-topology, where all metrics are equivalent).

To begin with let us prove closedness of the saddle-point map  ; under Assump-
tions 1.1 and 2.1 we �nd that for any given � in the unit-simplex the set of welfare
maxima f(x; y; p; �)g equals the set of saddle-points in (2.2). Assume now a se-
quence f�lg � � converging to some �� 2 �, and choose for each �l; l 2 IN,
from the set of saddle-points a (xl; yl; pl; �l) converging to some (x�; y�; p�; ��).
We have to show that (x�; y�; p�; ��) is in the set of saddle-points of ��. Looking
at the following characterization of saddle-points

L(xl; yl; p; �;�l) � L(xl; yl; pl; �l;�l) � L(x; y; pl; �l;�l)

which holds for all l 2 IN and all feasible (x; y; p; �), we derive from continuity of
L in x ,y, p, � and �

L(x�; y�; p; �;��) � L(x�; y�; p�; ����) � L(x; y; p�; ����);
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hence (x�; y�; p�; ��) is in the set of saddle-points of �� implying closedness of
 (�). To accept closedness of the extended saddle-point map  , note that
it can be built by a projection (�k; xk; yk; pk) 7! �k, followed by  : �k 7!
f(xk+1; yk+1; pk+1; �k+1)g, followed by a projection f(xk+1; yk+1; pk+1; �k+1)g 7!
f(xk+1; yk+1; pk+1)g and �nished by building the Cartesian product with �k, that
is, (�k; f(xk+1; yk+1; pk+1)g).
Next, from �k 2 � and the second item in Assumption 2.1 we observe pk+1 � 0
and pk+1 6= 0, implying continuity of �.

Before showing continuity of v in the last step, we �rst verify that it is well-
de�ned, i.e.

P
imax(0; �i + (Mi � p0Txi)) > 0 for any � 2 � and its resulting

(x; y). Assume contrarily
P

imax(0; �i + (Mi � p0Txi)) � 0; this implies Mi �
p0Txi � 0 for all i, and because � 2 � there is an i with �i > 0 forcingMi�p0Txi �
��i < 0. But then

P
i(Mi�p0Txi) < 0 contradicting

P
i(Mi�p0Txi) = p0T e = 0.

Thus,
P

imax(0; �i + (Mi � p0Txi)) > 0 and the map is well de�ned.

Based on that the upgrade mapping � is obviously continuous leading to the
veri�cation of closedness of �. Furthermore, non-emptiness and convex values
of � can be easily veri�ed using the fact that  has these properties. The �nal
condition to be veri�ed is that � has a compact and convex set of de�nition,
which is a consequence of Lemma 2.3 and the scaling onto the unit-simplex of �
and p. By Kakutani's Theorem we thus have the existence of a �xed point.

The veri�cation that any �xed point is a competitive equilibrium is a consequence
of the positive monetary endowment Mi > 0 for each consumer, induced by
Assumption 2.1. Assume in a �xed point � there is an i 2 I where �i = 0. From
the de�nition of the �xed point map we have then Mi � pTxi � 0 which is only
possible if pTxi > 0. But this contradicts the assumption of a welfare maximum
being maximal, because pTxi > 0 implies that xi has positive components for
goods with positive dual multiplier in the welfare problem. This implies in turn
that by setting xi = 0 we can strictly increase the overall welfare which, in view
of �i = 0, contradicts optimality of the welfare solution. Thus � > 0 and by
Theorem 2.5 the only point left to prove is that the budget constraint holds for
all i 2 I, which, for � > 0, follows directly from the �xed point property.

Extending Theorem 2.6, Ginsburgh and Waelbroeck [36] show that for every com-
petitive equilibrium there is an � > 0, such that the solution (x(�); y(�); p(�)) of
the corresponding welfare problem equals the equilibrium solution. This proves
that under the Assumptions 1.1 and 2.1 the set of equilibria is contained in the
set of welfare states.

It is interesting to see that this set-relation can be reversed in a restricted
sense: given � > 0 with a welfare solution (x(�); y(�); p(�)) ful�lling xi(�) �P

j2J �ijyj(�) � 0, we endow each consumer with

x0ei := xi(�)�
X
j2J

�ijyj(�) � 0;
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then the thereby de�ned economic equilibrium problem has the same solution as
the original welfare problem. To see this note that (x(�); y(�)) is feasible for the
optimization problems in De�nition 1.4(a) and (b), and that at (x(�); y(�)) the
KKT-conditions for both the consumer and producer problems are also ful�lled.

In this restricted sense equilibria and welfare are equivalent, but it is the point
of view which sets them apart: while equilibrium problems allow a direct control
of the endowment and thereby of the resulting distribution, the welfare approach
allows only to choose � which determines the distribution implicitly. This subtle
di�erence forms the fundamental distinction between centrally planned economies
and (`free') market economies. Super
uous to say that this distributional e�ect
is also of central importance when a community of countries agrees on trading
CO2 permits. The price for the di�erent modeling philosophy is the change from
a (convex) optimization problem in case of welfare problems to equilibrium prob-
lems, formulated e.g. as variational inequality problem, complementarity problem
or �xed point problem.

Finally, note that the view of a �xed point problem leads to solving approaches
like path following, cf. Garcia and Zangwill [33], which can be computationally
very demanding. In practice it turns out, however, that some heuristic methods,
based on the following general concept, are in our case very fast.

Algorithm 1 Conceptual Negishi Algorithm

(i) Choose a set of initial weights �0 and set k = 0.

(ii) Solve the Negishi welfare problem and compute thereby the regional excess
ekr and the dual price pk of the excess constraint.

(iii) Stop if all regional budget constraints pk T ekr are (close to) zero. Otherwise
set k := k + 1, update the weight vector �k and return to (ii).

The crucial part in this concept is the update step �k ! �k+1; two strategies are
discussed in Chapter 4 and numerically compared in Appendix F.5.

2.3 The Path Following Concept

This section is based on Garcia and Zangwill [33]. The concept and the relation-
ship to our problem MMmr is given in some detail, because the proof of existence
of a solution to MMmr is based on this idea. The reason why we can not simply
verify the assumptions underlying the Negishi proof of existence has to do with
the more complex structure involved in the consumers of MMmr.

At its heart the path-following (homotopy) concept solves a system of (nonlinear)
equations by following a path from a known solution of the somehow twisted
problem to a real solution of the original problem.
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To bridge the gap to our EEP we proceed in several steps; �rst the economic equi-
librium problem EEP is transferred into an equivalent Nash equilibrium problem
(EP) by introducing an arti�cial price-agent. EP consists of jIj+jJ j+1 optimiza-
tion problems which can be formulated equivalently as systems of equations by
using the theory of Karush-Kuhn-Tucker, given some regularity conditions hold.
A simultaneous solution to the jIj+ jJ j+1 systems of equations is an equilibrium
solution of the original EEP and can, in principle, be found by applying a path-
following approach. Taking the last step �rst the basic idea in the path-following
concept can be described as follows:

1. Extend the original system of equations by introducing a scalar t, such that
for t = 0 we have a unique known solution v0, while at t = 1 it coincides
with the original system.

2. Follow the path v(t) of the system's solution from t = 0 to t = 1, thereby
solving the original problem.

As a simple example consider the linear system Av = b with a non-singular
A 2 IRn�n. Take any v0 2 IRn and choose d according to Av0 = b + d =: �b.
The extended system is Av = �b � td where, at t = 0, we have a unique solution
v0 = v(0) and, at t = 1, the solution v(t) solves the original problem.

In general, given some assumptions, the path is di�erentiable and goes from one
starting point v0 exactly to one endpoint v(1). It does not turn back to a solution
v(0), bifurcates to multiple solutions or diverges to in�nity.

Coming back to the question how EEP can be transformed into a system of
equations, we �rst catch the feasibility and complementarity condition (c) in the
De�nition 1.4 of EEP in an arti�cial price agent, de�ned by the following problem;
as usual � denotes the unit simplex from (1.11).

De�nition 2.3 (Price agent, [33, (6.2.2)]) Given the overall excess e (supply
minus demand), the price agent chooses a price p solving

min
p2�

eT p: (2.3)

The price agent can be interpreted as the `invisible hand' postulated by Smith.
To see that (2.3) can indeed replace condition (c) in De�nition 1.4 the following
(Nash) equilibrium problem is studied.

De�nition 2.4 (Equilibrium problem, EP, [33]) (x�; y�; p�) is called an equilib-
rium solution of EP if simultaneously x� solves problem (1.5), y� solves prob-
lem (1.4), and p� solves problem (2.3).

The following lemma uses ideas of Garcia and Zangwill [33, p. 118 f].
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Lemma 2.7 (x�; y�; p�) is an economic equilibrium in the sense of De�nition 1.4
if and only if it solves the related EP in De�nition 2.4.

Let (x�; y�; p�) be a solution to EEP; then, by condition (c) in De�nition 1.4, we
know e � 0 and p�T e = 0, p� 2 �. Thus p� solves problem (2.3) and consequently
(x�; y�; p�) is a solution to EP.

To prove the reverse implication assume (x�; y�; p�) is a solution to EP. To show
that it also solves EEP, the non-negativity of e and complementarity with p�

must be deduced. Suppose �rstly that e 6� 0, then 9j : ej < 0. Because p� solves
problem (2.3) and the j-th unit vector is in �, we must have

p�T e � ej < 0: (2.4)

On the other hand the budget constraint for each consumer requires

0 = Mi � p�Tx�i = p�T
�
(x0i +

X
j2J

�ijy
�
j )� x�i

�
;

which, summed over all consumers, yields

0 = p�T
�X

i2I
(x0i � x�i ) +

X
j2J

X
i2I

�ij| {z }
=1

y�j

�
= p�T e: (2.5)

But this contradicts (2.4), and hence e � 0 is proven. Complementarity of p�

and e is an immediate consequence of e � 0, p� � 0 and (2.5).

Note that there is almost no structure required for this lemma to hold; it simply
su�ces to have agents (consumers and producers) which|given a price signal
from the price agent|reveal their optimal choice (consumption or production)
and that consumers obey their budget constraint. Speci�cally, problem (1.5)
representing consumers may contain arbitrary additional constraints. It is exactly
this property of EP which makes it applicable to MMmr.

Formally, EP consists of a set A (economic agents) of convex maximization prob-
lems which are connected by common variables; in view of the problems (1.5),
(1.4) and (2.3) we can think of jAj = jIj + jJ j + 1. We are looking then for a
simultaneous solution to these maximization problems and accomplish this by
transforming all problems into their corresponding KKT-systems of equations.3

Given some constraint quali�cations are ful�lled, we have thereby reformulated
EEP into a nonlinear equation problem (NEP).

The notation v = (va; v�a) used in the sequel symbolizes a decomposition of the
overall variable v into a part va which is in the realm of agent a, and the rest v�a

3Usually the KKT conditions are formulated with equations and inequalities; the inequalities
appear, because the sign of the Lagrange multipliers for the inequalities in the problem must be
�xed. A simple transformation not only eliminates these inequalities, but makes the resulting
equations even di�erentiable, cf. Garcia and Zangwill [33, p. 66].
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not under control of a. Considering the set of problems (1.4), (1.5) and (2.3), v
can be interpreted as (x; y; p), where va = xi if a represents consumer i, va = yj
if a represents producer j, and va = p if a is the price agent.

For the ease and generality of exposition we consider for all a 2 A the following
maximization problem encompassing the aforementioned problems.

max
va

fa(va; v�a) (2.6)

s.t. ga(va; v�a) � 0; (2.7)

ha(va; v�a) = 0: (2.8)

9>>=
>>; (2.9)

For a speci�c a 2 A problem (2.9) can be seen as a parametric optimization
problem.

To apply both the KKT-conditions and the path-following concept we assume
for the rest of this section the following.

Assumption 2.2 For all a 2 A the following holds:

(a) fa is concave and three times continuously di�erentiable in va;

(b) ga is quasi-convex and three times continuously di�erentiable in va;

(c) ha is a�ne in va;

(d) there exists a v0 such that ga(v
0) < 0 and ha(v

0) = 0.

The a�nity claimed for h in (c) might be relaxed while preserving the characteri-
zation of optimal points by the KKT-conditions, cf. Theorem A.1 and A.2 in Ap-
pendix A; in that case, however, linear independence of the vectors frvaha j a 2
Ag for all feasible v is needed. An important aspect in Assumption 2.2 is that
they apply only to va, the part of the variable under control of agent a. For
example, the consumer budget constraint is linear in va = xi, even though non-
linear in the overall variable which comprises y and p; similarly the objective of
the price-agent is linear in p, because the excess e is determined exogenously by
the consumers and producers.

To apply the path-following approach for solving the KKT-system corresponding
to problem (2.9), we �rst extend the objective in problem (2.9).

max
va

f ta(va; v�a) := t � fa(va; v�a)� (1� t)1
2
kv � v0k2

s.t. ga(va; v�a) � 0

ha(va; v�a) = 0

9>>=
>>; (2.10)
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Note that v0 is the unique solution for (2.10) at t = 0, and that due to the strict
concavity of f ta(va; v�a) in va for all t 2 [0; 1) the solution is unique for t 2 [0; 1).
Based on (2.10) the set of all KKT-equations for all agents in A de�nes therefore
a homotopy H(t) onto which the path-following concept can be applied.

Before stating the main theorem, the notion `regular' must be explained. In
order to have a di�erentiable path by applying the Implicit Function Theorem,
the Hessian of H with respect to the variable v and the Lagrange multipliers must
be regular, that is, of full rank. This is in principle required for all t 2 [0; 1]. By
using a perturbation technique due to Sard (cited in Garcia and Zangwill [33]),
however, this requirement can be overcome.

Theorem 2.8 ([33], Theorem 4.5.2) Let D = fv j ga(v) � 0 and ha(v) = 0 8a 2
Ag be the feasible set; if D is compact, Assumption 2.2 holds, and if H(t) is
regular, then the path starting at t = 0 reaches for t = 1 a simultaneous solution
to (2.9) for all a 2 A.

In view of the later application to MMmr a comment on Condition (d) in As-
sumption 2.2 is in order. On the one hand this condition allows to characterize
all optima by KKT-points (cf. Appendix A). On the other hand Condition (d)
makes H�1(0) a singleton, that is, v0 is the unique primal solution, and at the
same time the dual solution is also unique. This uniqueness-requirement is cru-
cial in order to prevent the path from turning back to t = 0. In case of MMmr

both requirements are met by proving linear independence of frvagag on a sub-
set of variables of va which are not used in the a�ne part ha. The argument
is straightforward: the a�ne part can always be made regular by eliminating
linear dependent equations, and together with linear independence of frvagag on
another subset of variables, the KKT-equations yield a unique solution for the
dual multipliers.



Chapter 3

Solche Schwierigkeiten hat der Mann vom Lande nicht er-
wartet; das Gesetz soll doch jedem und immer zugänglich
sein, denkt er, aber als er jetzt den Türhüter in seinem
Pelzmantel genauer ansieht, seine grosse Spitznase, den
langen, dünnen, schwarzen tatarischen Bart, entschliesst
er sich, doch lieber zu warten, bis er die Erlaubnis zum
Eintritt bekommt. Der Türhüter gibt ihm einen Schemel
und lässt ihn seitwärts von der Tür sich niedersetzen.
Dort sitzt er Tage und Jahre. Er macht viele Versuche,
eingelassen zu werden, und ermüdet den Türhüter durch
seine Bitten. F. K. [58]

Solving EEP Using the
VIP-Approach

This chapter discusses some mathematical background to VIPs which is relevant
for solving the excess-based (VIP) posed by the primal integration, cf. Section 1.4.
As part of this discussion two algorithms are presented. For a good general
introduction to VIPs see e.g. Kinderlehrer and Stampacchia [65]; a summary
is presented in Appendix A.4. Another excellent survey focusing equilibrium
problems has been given by Harker and Pang [47]. The chapter is organized as
follows.

The crucial role of the di�erent monotonicity properties is investigated in Sec-
tion 3.1 and is brought into relation with the �rst algorithmic concept, the cutting
plane method (CPM).

Section 3.2 seeks to present the subtle structural di�erences between pseudo-
monotonicity and monotonicity causing fundamental di�erences in the complex-
ity of the algorithms deduced. While a direct application of CPM to pseudo-
monotone or monotone problems does not yield a polynomial complexity, Nes-
terov and Vial [87] found a homogenized reformulation which is pseudo-polynomial
for monotone problems. The resulting homogenized CPM for monotone VIPs is
presented and discussed.

The �rst two sections highlight the necessity of (pseudo-)monotonicity for apply-
ing a cutting plane method. On that background Section 3.3 motivates (pseudo-)
monotonicity of the excess map from an economic point of view; even though
no (pseudo-)monotonicity-proof can be expected, there is quite some evidence to
observe an `almost' pseudo-monotone excess if the number and heterogeneity of
agents is su�ciently large.

Contributions in Section 3.1 include the necessity-discussion of pseudo-monotoni-
city in the course of CPM (cf. Lemma 3.3), the equivalence of local and global
(pseudo-)monotonicity (cf. Lemma 3.4) permitting the use of sensitivity analysis,



22 Solving EEP using the VIP-approach

or the concept of "-pseudo-monotonicity. In Section 3.2 original work lies in the
examples, and �nally Section 3.3 brings in the speci�cities of MMmr.

3.1 Monotonicity Reconsidered

The basic Variational Inequality Problem can be stated as follows.

De�nition 3.1 (Variational Inequality Problem, VIP(f;D), [65, problem 4.1])
Let D � IRn be convex and f : D � IRn ! IRn; �nd x 2 D, such that

f(x)T (y � x) � 0 8y 2 D: (3.1)

For such a point-to-point operator f the following properties are fundamental.

De�nition 3.2 (cf. [91]) f is called
monotone over D, if (f(x)� f(y))T (x� y) � 0 8x; y 2 D, and
pseudo{monotone over D, if [ f(y)T (x� y) � 0) f(x)T (x� y) � 0 ] 8x; y 2 D.

To support intuition, note that under suitable assumptions the notion of mono-
tonicity of f is equivalent with convexity of some F where f � rF .
Proposition 3.1 Let D be convex, U � D be open, F be once continuously
di�erentiable on U and set f := rF ; then

1. ([79]) f is monotone on D if and only if F is convex on D;

2. ([62]) f is pseudo-monotone on D if and only if F is pseudo-convex on D.

Based on a suitable de�nition of subdi�erentials Aussel, Corvellec and Lassonde
[5] and Aussel [4] extend the above two equivalences onto semi-continuous func-
tions F .

The set of solutions of VIP(f;D), abbreviated by (f;D)�, is intimately related
to a second set of `solutions'

(f;D)�� := fx j f(y)T (y � x) � 0 8y 2 Dg: (3.2)

If we introduce the cut set

Cy := fx 2 D j f(y)T (y � x) � 0g
(3.2) can be written in the form (f;D)�� = \y2DCy: A possible interpretation
of (f;D)�� is based on Proposition A.11, where (f;D)�� appears as (part of the)
set of minima of the minimization problem minx2D F (x), and where f = rF
for a continuously di�erentiable function F . Because (f;D)�� is built by the
intersection of (possibly in�nitely many) linear cuts, it is always convex and
thereby forbids isolated solutions. The relation between (f;D)� and (f;D)�� is
stated in the following proposition.
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Proposition 3.2 ([65, 57]) Let D be convex, then the following relations hold,
where ` ��' allows any set relation:

arbitrary f pseudo-monotone f

arbitrary f (f;D)�� �� (f;D)� (f;D)�� � (f;D)�

continuous f (f;D)�� � (f;D)� (f;D)�� = (f;D)�

Note how (f;D)�� approximates (f;D)� from inside or outside, depending on
the properties given. Consequently (f;D)�� is called set of weak solutions if the
focus lies on pseudo-monotonicity; in this case (f;D)� is called set of strong
solutions. If, however, continuity is put forward, a Lyapunov function can be
given which makes all points in (f;D)�� stable solutions of the corresponding
dynamical system, motivating the name set of stable solutions for (f;D)��.

To illustrate that the set relations in Proposition 3.2 are strict, a �rst non-
continuous but pseudo-monotone example is depicted in Figure 3.1; here (f;D)�

is non-convex and thus (f;D)� $ (f;D)��.

(0; 0) 1 2 3

1

2

f(x) =

(
(0; 0:3) if (x2 > 1) _ (x2 = 1 ^ (x1 < 1 _ x1 > 2));

(0; 0) else.
set of solutions

Figure 3.1: A pseudo-monotone and non-continuous map with a non-convex so-
lution set (f;D)�.

An even simpler example shows (f;D)�� $ (f;D)� for a continuous mapping;
choose D = [�1; 1] and set f(x) := �x. Then (f;D)�� = ; $ f�1; 0; 1g =
(f;D)�.

In view of Proposition 3.2, an algorithm for VIPs with pseudo-monotone opera-
tors can be set up exploring the fact that (f;D)� � Cy for all y 2 D. Thus, an
obvious scheme for �nding a point in (or close to) (f;D)�� follows Algorithm 2.

Algorithm 2 Cutting plane method (CPM) for pseudo-monotone VIPs.

(i) Set k=0, choose an inner point x0 2 D and set D0 := D.

(ii) Stop if xk satis�es a stopping criterion, otherwise proceed.

(iii) Reduce the feasibility set: Dk+1 := Dk \ Cxk .

(iv) Choose an inner point xk+1 2 Dk+1, set k  k + 1 and go back to (ii).
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We will use the notion `inner point' in the steps (i) and (iv) synonymical with
`center'. There are basically two classes of centers. On the one hand geometri-
cally de�ned centers (like the prominent center of gravity, or less used ones like
the center of the largest inscribed (smallest circumscribed) ellipsoid) which are
independent of the analytic description of the set Dk. On the other hand so
called analytic centers which do depend on the analytic representation of Dk (see
Kaiser [59]), and for which `the' analytic center became very popular in the last
years. If Dk is a polytope the analytic center is de�ned as follows.

De�nition 3.3 (Analytic center, [97]) Let fx jAx � bg; whereA 2 IRm�n, be
a compact polytope with nonempty interior; then the unique maximizer ofPm

i=1 log(b� Ax)i over fx : Ax < bg is called analytic center.

As a convenient abbreviation we use ACCPM (analytic center cutting plane
method, cf. Go�n and Vial [38]) for Algorithm 2 where the analytic center is
used as inner point in step (i) and (iv).

Proposition 3.2 underlines the relevance of pseudo-monotonicity; as well as it is
usually required for a minimization problem to ful�ll some convexity properties in
order to be `reasonably' solvable, the same applies to monotonicity with respect
to VIP. The reason is that these conditions allow to draw conclusions about the
global behavior of a map given local information only.

To understand better the role of pseudo-monotonicity in the cutting plane method,
we assume continuity of f and ask if pseudo-monotonicity is necessary for the
equality (f;D)� = (f;D)��. The example with D = [0; 1]2 and f(x) = (0:01 �
0:1x1x2; 1) exhibits (f;D)

� = (f;D)�� = f(0; 0)g, but pseudo-monotonicity is not
given as can be seen from the test-points x = (0; 0:5) and y = (1; 0:5). Hence,
pseudo-monotonicity is not necessary for this cutting plane construction, it is
only su�cient.

In a sense made explicit in the following lemma, however, the identity (f;D)� =
(f;D)�� is equivalent with pseudo-monotonicity under the assumption of continu-
ity. Or in other words: pseudo-monotonicity, under the assumption of continuity,
is the weakest possible condition guaranteeing (f;D)� = (f;D)��.

Lemma 3.3 Given a compact, nonempty and convex set ~D � IRn and a contin-
uous map f : ~D! IRn; then the following two statements are equivalent:

(i) f is pseudo-monotone on ~D;

(ii) 8D � ~D, D convex and closed, it holds (f;D)� = (f;D)��.

The implication `(i)) (ii)' is stated in Lemma 3.2; the reverse is shown as `not
(i) implies not (ii)'. Not (i) implies the existence of x; y 2 ~D : f(y)T (x� y) � 0
and f(x)T (x � y) < 0. Set D := [y; x], that is, the line segment from y to x.
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Then y is obviously a solution, that is, y 2 (f;D)�. But by f(x)T (x� y) < 0 we
have y 62 (f;D)��. Therefore (ii) does not hold.
Other similar results can be found in John [57].

Having established the necessity of pseudo-monotonicity for any cutting plane
method, the question arises, under what conditions (pseudo-)monotonicity of the
excess map can be expected. From an economic point of view Dafermos [16]
claims that the excess map of a reasonable economic equilibrium problem should
be at least `nearly' monotone. This qualitative standpoint is mathematically
analyzed by Hildenbrand [51] and will be discussed in Section 3.3. Mathematically
seen, the overall excess is the sum of (part of) the solution of the individual
utility and pro�t maximization problems; the dependency on the price signal
can thus be understood as a sensitivity analysis of the underlying maximization
problems. Based on such an analysis, one can either try to resolve the question
on the level of the overall excess or, simpler, observe that (pseudo-)monotonicity
of the individual consumers ei(p) implies overall (pseudo-)monotonicity. Here
we do not address the topic of sensitivity analysis which has a rich literature
(for a good presentation see Gauvin [35]). Instead, we point to the fact that
sensitivity analysis gives local information, whereas the cutting plane algorithm
requires global (pseudo-)monotonicity. But, as is seen below, the local and global
behavior coincides.

De�nition 3.4 Let U�(x) be the open ball with radius � centered at x. Then f :
D � IRn ! IRn is called locally (pseudo-)monotone around x 2 D if 9� > 0; such
that f is (pseudo-)monotone in U�(x) \D. Furthermore, f is called everywhere
locally (pseudo-)monotone if f is locally (pseudo-)monotone around all x 2 D.

Lemma 3.4 Let D � IRn be a convex set and f : D ! IRn be everywhere locally
(pseudo-)monotone, then f is (pseudo-)monotone on D.

First the monotone case is treated. Chose any two points x 6= y in D. From the
local monotonicity property we can cover the compact line segment [x; y] � D
with a �nite covering U of (relative) open sets, where f is monotone on U for
all U 2 U . From U we extract another covering with corresponding set of points
fxigi=0;::: ;N+1 � [x; y] such that all pairs of consecutive points are in the same U i.

To do this the following algorithm is used which selects the `good' sets from U
and de�nes a �rst auxiliary set fzkg � [x; y]:

(i) Set k := 0 and z0 := x.

(ii) Choose any Uk 2 U such that zk 2 Uk.

(iii) If y 2 Uk de�ne N := k and stop.
Else set k := k + 1, de�ne zk := argmin

z2[x;y]n[j<kUj

kx� zk; and goto (ii).
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The `else'-case in step (iii) is well de�ned, because the set over which the min-
imization is done is compact and non-empty. Finiteness of the algorithm is an
immediate consequence of �niteness of U together with the property that no U i

can be chosen twice (because zk 62 U j for 0 � j < k). Finally, the chosen sets
fU igi=0;::: ;N cover [x; y], and we can assume N > 0 (otherwise x and y are in U0

and then monotonicity would hold).

Now the interesting set fxig is de�ned. Due to openness of the sets in fU igi=0;::: ;N

our construction guarantees non-empty intersection U i \ U i+1 \ [x; y] for i =
0; : : : ; N � 1. Hence we can choose xi+1 2 U i \ U i+1 \ [x; y] such that (xi+1 �
xi)T (y � x) > 0 for i = 0; : : : ; N � 1. Additionally we de�ne x0 := x, xN+1 := y.
The resulting sequence has the property that every consecutive pair belongs to
the same set where monotonicity of f holds, i.e. xi 2 U i and xi+1 2 U i for
i = 0; : : : ; N .

After this lengthy construction we know now

[f(xi+1)� f(xi)]T [xi+1 � xi] � 0 for i = 0; : : :N:

The relative length

�i :=
kxi+1 � xik
ky � xk for i = 0; : : :N

must be in the interval (0; 1], and so from non-negativity of all summands involved
we have

0 �
NX
i=0

[f(xi+1)� f(xi)]T [xi+1 � xi]

=
NX
i=0

�i[f(x
i+1)� f(xi)]T [y � x]

� [y � x]T
"

NX
i=0

[f(xi+1)� f(xi)]
#

= [y � x]T [f(y)� f(x)]:
Now we prove the pseudo-monotone case by contradiction. Suppose f is not
pseudo-monotone at x; y 2 D, x 6= y, that is,

f(y)T (x� y) � 0 and f(x)T (x� y) < 0:

Denote by x(t) := y + t(x� y) and set

t� := infft 2 [0; 1] j f(x(t))T (x� y) < 0g:
In the sequel, the following implications derived from scaling are used: If t 2 (0; 1],
then f(y)T (x � y) � 0 implies f(y)T (x(t)� y) � 0; and if 1 � tx > ty > 0, then
f(x(ty))

T (x � y) � 0 implies f(x(ty))
T (x(tx) � x(ty)) � 0. The same applies to

the case `<'. Now there are three possible cases concerning t�:
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(i) t� = 0: This implies that for any � 2 (0; 1) there is a tx 2 (0; �=kx �
yk) such that f(x(tx))

T (x � y) < 0. Furthermore x(tx) 2 U�(y), hence
f(y)T (x(tx)� y) � 0 and f(x(tx))

T (x(tx)� y) < 0, that is, f is not locally
pseudo-monotone around y.

(ii) t� 2 (0; 1): Here we have for any � 2 (0; 1) a ty 2 (t���=(2kx�yk); t�)\[0; 1]
and a tx 2 [t�; t� + �=(2kx� yk)) \ [0; 1] ful�lling

f(x(ty))
T (x� y) � 0 and f(x(tx))

T (x� y) < 0:

Because ty < tx we have kx(tx)�x(ty)k > 0, so f(x(ty))
T (x(tx)�x(ty)) � 0

and f(x(tx))
T (x(tx) � x(ty)) < 0. From the construction follows x(tx) 2

U�(x(ty)) and therefore f is not locally pseudo-monotone around x(ty).

(iii) t� = 1: Similar to case (i).

If convexity of D is dropped, however, the claim of Lemma 3.4 can be falsi�ed
by simple counter-examples; note also that continuity of f is not required.

So far we insisted on `global' pseudo-monotonicity in order to guarantee that the
set of solutions (f;D)� is contained in the cut set (f;D)��. If we are satis�ed
by one solution x 2 (f;D)�, however, we can replace the condition of pseudo-
monotonicity over the whole set D by the condition of pseudo-monotonicity at x
alone.

De�nition 3.5 f is called pseudo-monotone at x 2 D over D if the implication�
f(x)T (y � x) � 0 =) f(y)T (y � x) � 0

�
is true for all y 2 D.

Lemma 3.5 Assume x 2 (f;D)� and f is pseudo-monotone at x over D, then
x is not cut away by any cut, i.e. 8y 2 D : x 2 fz j f(y)T (y � z) � 0g:

The proof is an immediate consequence of the de�nition.

D

yf(y)
kf(y)k

g
"

Figure 3.2: "-relaxation.

A second kind of relaxation is motivated by practical prob-
lems where one always has to deal with numerical imperfections.
Looking at the geometry of a cut in Figure 3.2, where an ad-
ditional strip of width " > 0 (gray shaded) is included in the
cut set C"

y := fx 2 D j f(y)T (y� x) � �"kf(y)kg demonstrates
that the corresponding notion of "-pseudo-monotonicity is a true
relaxation of pseudo-monotonicity:

De�nition 3.6 f is "-pseudo-monotone over D if�
f(x)T (y � x) � 0 =) f(y)T (y � x) � �"kf(y)k� 8x; y 2 D:
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It is interesting to note that in our practical economical examples we usually
observed "-pseudo-monotonicity for some appropriate " > 0, whereas pseudo-
monotonicity occured less frequently.

Let Y k = fy0; : : : ; ykg � D be such that \yi2Y kC0
yi has non-empty (relative)

interior, which is exactly the situation of Algorithm 2. Then the point to set
map " 2 [0;1) 7! \yi2Y kC"

yi is continuous. Namely continuity also holds at the
boundary " = 0. This is a consequence of [30, Theorem 3.2] together with the
fact that non-empty interior of \yi2Y kC0

yi implies non-emptiness of \yi2Y kC"
yi for

some " < 0.

In the course of an algorithmic process one can vary ", say proportional to the
radius of the largest inscribed sphere at the given iterate yk, which, in case of
a polytope D, is easy to compute. If such a relaxation-scheme is applied in a
situation where the operator is strongly f -monotone and the volume reduction
for non-relaxed cuts is bounded by a constant smaller than 1 (cf. [71]), such a
relaxation is always possible while maintaining polynomial complexity.

3.2 Complexity of the VIP-Approaches

In the last 30 years the computational complexity has become an ever increasingly
important aspect in the analysis of problems and corresponding algorithms. For
a good survey on the historical development see for example Cook [14]. Closer to
our problem is the monograph from Nemirovsky and Yudin [84]. In our context
the basic question is: Given a class of problems de�ned by certain properties, is
there a scheme which, for every " > 0, �nds an `"-close' solution after a polynomial
number of arithmetic operations A (or iterations I).

To sharpen the question, the notion of an "-close solution must be �xed; for
convex minimization problems one usually considers an iterate xk to be an "-
close solution if jF (xk)� F (x�)j � ", where F denotes the objective and x� is a
minimizer.1 Lacking an objective for VIPs, alternate measures must be used, see
De�nition 3.7 and 3.8 below.

Next, to make the notion `polynomial' operational the arguments must be spec-
i�ed. Possible arguments comprise the dimension n of the involved Euclidean
space, a characterization of the feasible set D like the diameter � of D and the
radius � of the largest sphere contained in D, and as characterization of f both
a Lipschitz constant L and an upper bound M of kf(x)k for x 2 D. We call
a problem class and the corresponding algorithm polynomial, if we can �nd a
polynomial p(n; �; �; L;M; log(1

"
); : : : ), such that A � p(: : : ) (or I � p(: : : )) for

any problem instance in this class of problems. If the polynomial p depends on
1
"
rather than log(1

"
), the complexity is called pseudo-polynomial.

1More popular is a relative "-solution concept; if V is a good lower bound on the variation
of F over D, i.e. V � maxx2D F (x) � minx2D F (x), a point x 2 D is called an "-close solution
if jF (xk)� F (x�)j=V � ".
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For our discussion it is important to emphasize the di�erence between the state-
ment `problem class Z is polynomial (solvable)' and `algorithm Y which solves
all problems of class Z is polynomial'. While the former is not speci�c about the
algorithm (it requires only the existence of a polynomial algorithm), the latter
claims polynomial complexity with a given algorithm.

Research in the last 10 years has revealed polynomial complexity for many impor-
tant classes of convex minimization problems and consequently monotone VIPs
(see e.g. [86, 98]); the underlying algorithms are so called path-following (in-
terior point) methods which need a continuously di�erentiable f together with
an `easily' computable barrier, which must ful�ll some additional conditions. If
derivatives are not available|as it is the case for the MMmr-based VIP|, and
hence we apply a strategy following Algorithm 2, the example in Figure 3.5 below
proves non-polynomial complexity for a monotone VIP. Because a monotone op-
erator is pseudo-monotone the same non-polynomial complexity of Algorithm 2
holds for pseudo-monotone VIPs, see also Figure 3.4 below.

Strikingly enough, Nesterov [85] proves pseudo-polynomial complexity using AC-
CPM for convex minimization problems, where f is the gradient map of the
objective. Furthermore, for an adapted ACCPM where super
uous constraints
are dropped even polynomial complexity can be shown, see Atkinson and Vaidya
[3]. In view of Proposition 3.1 we have the unsatisfactory situation that ACCPM
is polynomial for monotone VIPs only if f is the gradient of some convex function.

Dropping the assumption of a convex integral, a �rst polynomial complexity re-
sult based on Algorithm 2 using centers of circumscribed ellipsoids was proven
1985 in L�uthi [70] for strongly monotone VIPs. A generalization (in a certain
restricted sense) for strongly f -monotone VIPs appeared 1996, see Magnanti
and Perakis [71]. This case is of interest because it represents the weakest as-
sumption known to date for polynomial complexity based on Algorithm 2. For
monotone problems an ingenious breakthrough due to Nesterov and Vial [87]
was �nally achieved by homogenization of the problem and applying ACCPM in
this extended setting. As an interesting detail, however, it turns out that the
iterates yk do not represent a sequence converging to a solution. Only after a
clever weighting, �yk =

Pk
i=0wiy

i, a sequence �yk is obtained which converges with
pseudo-polynomial complexity to a solution.

To give an insight in the subtleties of the structures involved, we brie
y outline in
Section 3.2.1 the behavior of pseudo-monotone VIPs when solved by Algorithm 2.
In Section 3.2.2 the monotone case is discussed where a homogenized ACCPM is
used.

3.2.1 The Pseudo-Monotone Case

The notion of strong and weak solutions (see page 23) leads to two measures re-

ecting the `closeness' of any x 2 D to the two solution sets (f;D)� and (f;D)��
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respectively. Examining �rst the strong solution property de�ning the true solu-
tion set (f;D)� = fx 2 D j f(x)T (y � x) � 0 8y 2 Dg of VIP(f;D), we �nd for
any x 2 D

min
y2D

f(x)T (y � x) � 0;

where miny2D f(x)T (y� x) = 0 if and only if x 2 (f;D)�. By changing the sign
we observe maxy2D f(x)T (x � y) � 0 for any x 2 D and `= 0' if and only if
x 2 (f;D)� motivating the following notion.

De�nition 3.7 (Primal gap function, [48]) gp(x) := max
y2D

f(x)T (x� y).

A speci�c interpretation of gp can be given in case of convex minimization prob-
lems, where we have F (x�) � F (x) +rF (x)T (x� � x) for a solution x� and any
x 2 D. We then see

jF (x)� F (x�)j = F (x)� F (x�) � rF (x)T (x� x�)
� max

y2D
rF (x)T (x� y) = gp(x);

that is, gp(x) gives an upper bound for jF (x)�F (x�)j. More generally, gp(x) can
be geometrically interpreted as measuring the width of Cx := f y 2 D j f(x)T (x�
y) � 0 g along f(x) scaled by kf(x)k. Next, the weak solution property de�ning
the weak solution set (f;D)�� = fx 2 D j f(y)T (y � x) � 0 8y 2 Dg can
analogously be understood as miny2D f(y)T (y � x) � 0 for all x 2 D, and with
`= 0' if and only if x is a weak solution, that is, x 2 (f;D)��. Changing the sign
yields the de�nition of the dual gap function:

De�nition 3.8 (Dual gap function) gd(x) := max
y2D

f(y)T (x� y).

From the de�nitions of the gap functions follows an obvious way howgP (x)

f(x)

x

Figure 3.3: Non-
convexity of gp for
a monotone VIP.

a VIP can simply be stated as minimization problem. But while we
can prove in Lemma 3.6 convexity of gd without any assumptions, this
is not true for the primal gap function; even under the assumption
of (strong-)monotonicity gp can be non-convex as is demonstrated by
the following example. Think of a half-funnel de�ned over D = [0; 2]
with F = 1

2
x2 for x 2 [0; 1] and F (x) = x � 1

2
for x 2 (1; 2]. F is

convex and once continuously di�erentiable with f(x) := rF (x) = x
for x 2 [0; 1] and constant 1 for larger x, see Figure 3.3. For gp(x)

we �nd x2 in the unit interval [0; 1] and x for x 2 (1; 2]. Thus, even though gp
is convex both within [0; 1] and (1; 2], it is obviously non-convex on whole D.
By twisting slightly F on (1; 2] the same construction can be extended to strong
monotone maps derived from F . But at least gp is continuous. The situation
with the dual gap function is nicer as is shown in the following lemma.

Lemma 3.6 gd is convex and continuous on D.
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gd is the supremum of linear functions and therefor convex onD. From convexity
follows continuity in the interior of D. In general, a convex function may be non-
continuous on the boundary of its domain; in case of gd, however, we can exploit
its speci�city. First note that the extended map �gd(x) := maxy2D f(y)T (x � y)
is well de�ned and convex on D + " for any " > 0. Thus �gd is continuous on
int(D + "); because �gd � gd on D and additionally D � int(D + "), gd must be
continuous on D.

To tackle the question, if a cutting plane concept follow-

x�

x1

x2

x3

g�

Figure 3.4: Complexity of a
cutting plane algorithm for
a pseudo-monotone VIP.

ing Algorithm 2 can have polynomial complexity for pseudo-
monotone VIPs, we �rst have to agree on how the centers
are chosen. As is demonstrated by the example presented in
Figure 3.4, all `reasonable' centers like the center of gravity,
the analytic center, the center of (inscribed or circumscribed)
ellipsoids or the volumetric center, behave qualitatively equal
and we can choose whatever we like. Next, we have to agree
on how the quality of an approximate solution xk is mea-
sured; in this example we restrict ourselves to gd and take
as a second measure the Euclidean distance from the set
of solutions, for which we have the trivial characterization
d(xk; (f;D)�) = 0 if and only if xk 2 (f;D)�.
Looking at Figure 3.4, we �rst note that the vector-�eld is pseudo-monotone and
continuous implying (f;D)� = (f;D)�� = fx�g. Next, we see that by choosing
� > 0 su�ciently small, an arbitrary number of iterates can be kept on the central
vertical line. To estimate gd(x

k) and d(xk; x�), we assume that the cube has sides
of length 1, x� = (3

4
; 0), that the length of the vectors amounts constantly to 1

5

at all feasible points, and that the vector-�eld has an angle with the bottom line
of 2�

3
for all points on the bottom line which are by at least some small " > 0 to

the left of x� (with this "-gap we can interpolate the vector-�eld continuously to
match the picture and have a unique solution). Choosing in the evaluation for
gd(x

k) a y at the bottom line and by " to the left of x�, we �nd as a lower bound
gd(x

k) & cos(�
3
) � 1

5
� 1
4
= 1

40
for an arbitrary number of iterations k. Similarly

we see d(xk; (f;D)�) = kxk � x�k � 1
4
. Hence a cutting plane concept following

Algorithm 2 does not possess polynomial complexity with respect to gd or the
Euclidean distance for pseudo-monotone problems.

Such a non-polynomial behavior can also be observed if the primal gap function gp
is chosen as measure. Consider again the unit-square f0 � x1 � 1g�f0 � x2 � 1g
and de�ne f(x) = (0; 1) if x2 > � and f(x) = (1; 0) if x2 � �. By choosing a suf-
�ciently small � > 0 we can provoke an arbitrary number of cuts parallel to the
x1-axis for reasonable centers (like the analytic center or the center of gravity), but
�nally a center will lie for the �rst time in the �-strip along the x1-axis. For the an-
alytic center or the center of gravity this will happen on the vertical line xk1 = 1=2,
and so gp(x

k) = 1=2 for an arbitrary large k. The operator in this example could
also be made di�erentiable by inserting an appropriate `small' transitional strip.
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To gain polynomial complexity in a cutting plane concept following Algorithm 2,
strong f -monotonicity is the weakest known condition to date, cf. Magnanti and
Perakis [71]. If the problem is solved in a homogenized reformulation, however,
monotonicity is su�cient for pseudo-polynomial complexity. The next section
outlines this approach.

3.2.2 The Monotone Case

Until recently this case resisted a theoretical

y1

y2

f(y) =
�
�y2
y1

�

y0y�

D

1

2

Figure 3.5: A monotone operator with di-
verging ACCPM.

satisfactory treatment. Nesterov and Vial [87]
�nally suggested a homogenization concept
and proved pseudo-polynomial complexity for
solving monotone VIPs without further condi-
tions (except bounded kfk on D, which is not
demanding). In Figure 3.5 an example due to
Nesterov and Vial [87] is given, where f(y) =
(y2;�y1) is monotone, D = [�1; 2] � [�1; 1],
and the unique solution lies in the origin 0.
For an improved presentation the vectors of
the vector-�eld f are depicted slightly short-
ened along the boundary of D. Note that f
is not integrable because its derivative is not

symmetric. Considering Algorithm 2 all cuts pass through the origin and hence
the analytic center is, starting from y0 = (1=2; 0), driven away from the solution
towards (�1; 0) when ACCPM is applied directly (dotted line). The hard nature
of this problem is further underlined by using other centers like the center of
gravity or the center of maximal inscribed ellipsoids which converge to (�2=3; 0)
and (�1; 0) respectively, i.e. far away from the true solution.

On the background of this general di�culty with Algorithm 2, the result due to
Nesterov and Vial [87] fascinates even more; its iterates are depicted along the
solid line in Figure 3.5 showing convergence to the solution. To compare also
with path-following methods, the triangles connected by a dashed line represent
the iterates of an algorithm described in Ralph and Wright [93]. Because of the
quick convergence only the �rst few iterates are shown, after 10 iterations the
absolute value of the components of the iterates are already below 10�20.

In the next section the basic analytic center cutting plane solution concept in the
frame of a homogeneous feasibility problem is given, and in a subsequent section
applied to monotone VIPs. For an improved presentation we denote by y the
variable in the original space and by x the variable in the homogenized space.

The Homogeneous Feasibility Problem

The problem investigated in this section is the so called homogeneous feasibility
problem. Given is a closed convex cone K with non-empty interior, and a second
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closed convex cone X�. The feasibility problem then is to �nd x 2 K \ X�

with x 6= 0, or to approximate K \ X� in a sense speci�ed later. The following
de�nitions are necessary for the exposition.

De�nition 3.9 ([86, De�nition 2.1.1]) Let Q � IRn be open, convex and non-
empty and let � > 0. Then F : Q ! IR is called �-self-concordant (`�-scc') on
Q if F 2 C3 is convex, and for all x 2 Q and all h 2 IRn the following inequality
holds:

j r3F (x)[h; h; h] j � 2p
�
(r2F (x)[h; h])3=2: (3.3)

By the Mean Value Theorem we know (r2F (x1)�r2F (x2))[h; h] = r3F (�)[h; h; x1�
x2] for some � 2 [x1; x2]; thus, condition (3.3) states Lipschitz continuity of r2F
with respect to its own local norm r2F . Note that from the de�nition follows
`stability under summation' ([86], Prop. 2.1.1 (ii)), i.e. if Fi is �i-scc on Qi,
i = 1; 2, and Q := Q1\Q2 6= ;, then F1+F2 is �-scc on Q with � = minf�1; �2g.

De�nition 3.10 ([86, De�nition 2.3.2]) Let K � IRn be a closed convex set
and proper cone (i.e., K 6= IRn) with non-empty interior, and let � � 1. Then
F : int K ! IR is called a �-logarithmically homogeneous barrier for K (notation:
F 2 B�(K)) if F is a C2-smooth convex function on int K such that F (xi)!1
for each sequence fxi 2 int Kg that converges to a boundary point of K, and, for
each x 2 int K and each t > 0 we have

F (tx) = F (x) + � log t: (3.4)

If in addition F is 1-self-concordant on intK then F is called a �-normal barrier
for K (notation: F 2 NB �(K)).

Both �-logarithmically homogeneous barriers and �-normal barriers enjoy `sta-
bility under summation': If Fi 2 B�i(Ki), i = 1; 2 and int (K1 \ K2) 6= ; then
F1 + F2 2 B�1+�2(K1 \ K2). Furthermore, if Fi 2 NB�i(Ki), i = 1; 2, then
F1 + F2 2 NB�1+�2(K1 \K2).

As an important example consider a convex cone de�ned by m hyperplanes:
K = fx j aTi x � 0; i = 1; : : : ; mg. It possesses the m-normal barrier F (x) =
�Pm

i=1 log(a
T
i x) and therefore F (x) is also 1-scc. More generally, let F (x) be

a �-normal barrier for a cone K, and assume K \ fx j aTx � 0g has nonempty
interior; then the function F (x)� log(aTx) is a � +1-normal barrier for the cone
K \ fx j aTx � 0g.

De�nition 3.11 ([87, De�nition 1]) g(x) is called a homogeneous separation or-
acle for X� on intK if

(i) g(x)T (x� x�) � 0 for all x� 2 X� and all x 2 int K;

(ii) g(tx) = g(x) for all x 2 K;
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(iii) g(x)Tx = 0 for all x 2 K.

By (i) we do not lose any x� 2 X� by making cuts at any x 2 K, and by
(iii) the hyperplane returned by the separation oracle passes through the origin
maintaining thereby the cone-property. In the sequel we assume the following.

Assumption 3.1 ([87, Assumption 1])

(i) There is a �-normal barrier F (x) for K;

(ii) there is a homogeneous separation oracle g(x) for all x 2 int K, with
kg(x)k = 1.

Based on these assumptions the separation oracle is used in Algorithm 3 to solve
the feasibility problem.

Algorithm 3 Homogeneous cutting plane method ([87, (2.5)]).

(i) Set k = 0, F0 :=
�
2
k x k2 + F (x).

(ii) Compute the analytic center xk = argminx Fk(x), and set Fk+1(x) =
Fk(x)� log(g(xk)

T (xk � x)).
(iii) Stop if xk satis�es a stopping criterion, otherwise set k := k+1 and return

to (ii).

Due to the quadratic term �
2
k x k2 in F0 the centers are called proximal analytic

centers. In fact the factor �
2
can be replaced by any positive number without

changing the iterates in the projective geometry. This freedom is also present in
the later application to monotone VIPs described in Algorithm 4. In view of a
real world implementation the accuracy in the computation of the analytic center
and the oracle-response is to be clari�ed. At least the precision of computing the
analytic center can be considerably relaxed to the standard approximation

krFk(xk)k[r2Fk(xk)]�1 <
3�p5

2

while preserving qualitatively the complexity analysis below.

To measure the convergence of the iterates the following weighted average of the
slacks is studied:

�k(x) =
1

Sk

k�1X
i=0

�ikg(xi)
T (xi � x); (3.5)

where

�ik =
1

g(xi)T (xi � xk) for i = 0; : : : ; k � 1; and Sk =
k�1X
i=0

�ik:
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Note that analytic centers are always in the interior of the cone, implying xi 6= xj
for all possible i and j where i 6= j.

With the constants �1 :=
1
2
(
p
5� 1)� log(

p
5+1
2

) � 0:137, �2 :=
p
5+1
2
� 1:62, and

�3 :=
1
�2
e�1�1=2 � 0:43 the following main theorem holds for the conic feasibility

problem when Algorithm 3 is applied.

Theorem 3.7 ([87, Theorem 1]) For any x 2 K the following bound on �k(x)
holds:

�k(x) �
p
k + �

k�3
e(F (xk)�F (x0))=k k x k:

Furthermore, F (xk)� F (x0) � k
p
��2 yielding the bound

�k(x) �
p
k + �

k�3
e�2

p
�kxk: (3.6)

Solving Monotone VIPs

Consider a monotone VIP(f;D) with single valued f , whereD and f are bounded,
i.e. there exist constants R and L respectively such that k y k � R and k f(y) k �
L for all y 2 D. From monotonicity we know that gd(y) = 0 if and only if
y 2 (f;D)��, and moreover gd(y) is convex and continuous on D. Similar to
the cutting plane method outlined in Algorithm 2 we do not intend to solve
VIP(f;D), but want to �nd a point y which is close to (f;D)�� in the sense of
the dual gap function gd.

De�nition 3.12 Given the operator f and the compact set D with nonempty
interior, we call a point y an "-close solution to VIP(f;D) if gd(y) � ".

In a �rst step the VIP is transformed into a conic feasibility problem by the
following embedding:

X� := fx := (ty; t) j y 2 (f;D)��; t > 0g;
K := fx := (ty; t) j y 2 D; t > 0g:

Next we need a �-normal barrier for K; this can be constructed in a straight-
forward way if a �-scc barrier for D is known, cf. Nesterov and Nemirovskii [86,
Proposition 5.1.4]. Here we restrict ourselves to the relevant case of a feasible set
D de�ned by linear inequalities, fy j aTi y � bi; i = 1; : : : ; mg. This includes the
unit simplex � which is the feasible set in our equilibrium problem. In such a
case, with linear constraints only, an m + 1-normal barrier for K is given by

F (x) = �
mX
i=1

log(t(bi � aTi y))� log t = �
mX
i=1

log(bi � aTi y)� (m + 1) log t;

where, as de�ned above, x = (ty; t). In order to apply the machinery from the
previous section we have to impose the following assumption.
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Assumption 3.2 ([87, Assumption 3]) The origin 0 is the analytic center of D,
i.e. ryF (0; t) = 0.

Consequently, the minimizer of F0(x) = �
2
kxk2 � F (x) is x0 = (0; 1) yielding

kx0k = 1. In order to meet this requirement a translation of the whole problem
from the analytic center of D into the origin has to be done; this is also true in
the case of �, the feasible set of our equilibrium problem.

As a �nal ingredient for Algorithm 3 we need a homogeneous separation oracle
following De�nition 3.11; with

ĝ(x) := (f(y);�f(y)Ty)
the conditions (ii) and (iii) of De�nition 3.11 are obvious. The inequality in item
(i) of De�nition 3.11 is equivalent with f(y)T (y��y) � 0, and this contains the set
(f;D)��. Hence we have a homogeneous separation oracle, where, at �x = (�t�y; �t),
we have

ĝ(x)T (x� �x) = �t(f(y); y� �y): (3.7)

Theorem 3.8 ([87, Theorem 2]) Algorithm 3 yields an "-approximate solution
in the sense of De�nition 3.12 in at most k iterations, where k satis�es

kp
k + �

� L(1 +R2)

"�3
e�2

p
� : (3.8)

Assume fxig = (tiyi; ti) is the sequence generated by Algorithm 3; de�ne

�ik =
�ik
kĝ(xi)k ; Pk =

k�1X
i=0

�ik;

and

�yk =
1

Pk

k�1X
i=0

�ikyi: (3.9)

Choose an arbitrary y 2 D; from monotonicity of f we conclude

f(y)T (�yk � y) =
1

Pk

k�1X
i=0

�ikf(y)
T (yi � y) � 1

Pk

k�1X
i=0

�ikf(yi)
T (yi � y): (3.10)

Let x = (y; 1) be the corresponding canonic element in the cone K; then from
(3.7) we deduce further

1

Pk

k�1X
i=0

�ikf(yi)
T (yi � y) = 1

Pk

k�1X
i=0

�ikĝ(xi)
T (xi � x)

=
1

Pk

k�1X
i=0

�ikg(xi)
T (xi � x)

=
Sk
Pk
�k(x):
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Note that

kĝ(x)k =
p
kf(y)k2 + (f(y)Ty)2 � L

p
1 +R2

and so

Pk =
k�1X
i=0

�ik
kĝ(xi)k �

Sk

L
p
1 +R2

:

With kxk � p1 +R2 we derive from (3.6)

gd(�yk) � Sk
Pk

max
x=(y;1);
y2D

�k(x) � Sk
Pk

p
k + �

k�3
e�2

p
�
p
1 +R2

�
p
k + �

k�3
e�2

p
�L(1 +R2):

Replacing �nally gd(�yk) by " proves the claim.

The above theorem also proves implicitly the existence of a weak solution for
monotone, not necessarily continuous maps f . In view of Theorem 3.8 this is a
consequence of continuity of gd together with compactness of D.

Note that the reduction of the dual gap function is not achieved by the direct
iterates fxig or fyig respectively, but by the iterates f�yig which are computed as
weighted mean of all previous direct iterates fyig. The weight 1=(ĝ(xi)T (xi�xk))
attached to yi when computing �yk is large in two cases: (i) if the new iterate yk
comes close to the hyperplane through yi measured by 1=(g(xi)

T (xi � xk)), and
(ii) if the absolute value of the operator kĝ(xi)k is small. Both conditions express
the fact that yi is a good approximate solution.

The homogeneous barrier exploits strongly the problem-structure. A remark-
able outcome of this is the non-presence of the dimension of the problem in the
complexity-bound; however, � is in
uenced by the number and nature of the
constraints, and is therefore a measure for both the dimensionality and general
`hardness' of the problem. Furthermore, � appears in an exponential term which
can become a serious drawback for higher-dimensional problems.

As indicated in Nesterov and Vial [87] for the case of constrained minimization,
the quadratic dependency in R can be reduced to a linear dependency by a
suitable scaling of D. In case of a VIP we construct a scaled problem with a
parameter � > 0 by D ; 1

�
D and consequently we have to replace f(y) by f(�y)

to solve the old problem. In this scaled problem L stays una�ected, whereas
R becomes 1

�
R and " transforms to 1

�
". If we choose � = 
R proportional to

the original R, the complexity relation (3.8) of the scaled problem to regain an
"-solution of the unscaled problem is

kp
k + �

�
L
�
1 +

�
R
�

�2�
"
�
�3

e�2
p
� =

LR
�

 + 1




�
"�3

e�2
p
� :
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The factor 
 + 1


is minimal for 
 = 1, i.e. the scaling is optimal if � = R with

the complexity relation

kp
k + �

� LR

"�3
e�2

p
�: (3.11)

Let us conclude this section by expliciting the homogeneous cutting plane method
for monotone VIPs.

Algorithm 4 Homogeneous CPM for monotone VIPs (cf. [87]).

(i) Choose " > 0 and compute the related maximal iteration bound �k following
(3.8) or (3.11).

Set k=0, shift the initial feasible set at its analytic center into the origin,
let F (x) be the �-normal barrier for the related cone, and de�ne F0 :=
�
2
k x k2 + F (x).

(ii) If k > �k goto step (iv).

(iii) Compute the analytic center xk = argminx Fk(x), set Fk+1(x) = Fk(x) �
log(g(xk)

T (xk � x)), set k := k + 1 and goto step (ii).

(iv) Compute the solution �yk following (3.9).

Of course, instead of �xing the number of iterations in the beginning of Algo-
rithm 4, it can be reasonable to replace step (ii) by step (iv) and then to judge
the quality of �yk in every iteration. Note, however, that the explicit evaluation
of gd(�yk) is in general not tractable. Only the primal gap function can easily be
handled as linear programming problem in case of a polytopal initial feasible set.
And in view of (3.10) monotonicity helps to use the primal gap function as bound
for the dual gap function.

As a �nal aspect note that the accuracy required in the computation of the ana-
lytic center in Algorithm 4 seems to limit the attainable �nal quality of solution.2

This is a fundamental di�erence to Algorithm 3 for solving the feasibility problem.
The question of accuracy with respect to the oracle seems to be still open.

3.3 Economic Evidence for (Pseudo-)Monotonicity

of Market Demand

The previous two sections clari�ed the necessity of (pseudo-)monotonicity for
applying a cutting plane method. Following the notation in Section 1.1 we want
to justify here (pseudo-)monotonicity of the aggregate demand function d(p) =

2Personal communication with J.-P. Vial
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P
i2I xi(p). This is not yet the aggregate excess function which is the vector

valued di�erence between supply and demand as a function of the price, but if
the aggregate supply is monotone (e.g. independent of the price), the property
of monotonicity of demand and excess coincides.3 Dafermos [16] states for the
excess function that \monotonicity assumptions, though restrictive, are in the
spirit of the `law of demand' ".

To support intuition a typical one dimensional supply and de-

p

x

s(p)

e(p)

d(p)

Figure 3.6: Monotoni-
city of demand and ex-
cess.

mand curve with resulting excess is depicted in Figure 3.6. The
supply s is usually expected to increase when prices rise (nonnega-
tive slope of s(p)), whereas the demand d decreases (non-positive
slope of d(p)). Hence we observe not only monotonicity of the
demand, (d(p1) � d(p2))(p1 � p2) � 0, but even more plausible
monotonicity of the excess e(p) = s(p) � d(p). The relevance
and applicability of this one dimensional argument to higher di-
mensional cases, however, is limited. Major reasons are so called
cross-price e�ects, where changes in the price of a commodity i
in
uence demand or supply of a di�erent good j, which is a com-
mon phenomenon. Given such cross-price e�ects together with
monotonicity for each component, it depends then on the amount
and sign of the cross-price e�ects, whether or not the excess for prices di�ering
in more than one component is (pseudo-)monotone.

Note that in general the individual demand not only depends on the price, but
on the monetary endowment w as well. If w = pTx0 for �xed x0, the additional
variable w is not needed, but in general w has to be included and then the
individual demand function will be written in the form f i(p; wi); i 2 I. If there
is only one individual the index i is dropped.

In the sequel a number of cases will be investigated with respect to (pseudo-)mono-
tonicity of demand.

3.3.1 Pseudo-Monotonicity of Excess in the Case of Util-

ity Maximizing Consumers

As indicated above we focus the discussion on demand only. This might irritate,
because it is well known in the economic literature that for utility maximizing
consumers the resulting individual demand xi(p) is already pseudo-monotone. To
justify this claim we consider problem (1.6) but exclude production, i.e. yi = 0,
and drop the index i for convenience. In a �rst step we claim that the resulting in-
dividual demand function x(p) ful�lls WARP (weak axiom of revealed preference):

De�nition 3.13 (WARP, weak axiom of revealed preference, [94]) The demand
function f(p; w) : IRn�1

+ ! IRn
+, with price p and monetary endowment w (outlay,

income), is said to ful�ll the weak axiom of revealed preference if for every pair
(p1; w1), (p2; w2) 2 IRn

+ � IR+, p
2Tf(p1; w1) � w2 implies p1Tf(p2; w2) � w1.

3We use here the convention of the economic literature, where monotonicity of demand is
de�ned with reversed sign (inequality) compared to our de�nition 3.2. In the case of supply or
the excess, however, our de�nition applies.
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In order to show WARP for consumers based on (1.6) we �rst bridge the gap to
our notation by setting x(p) = f(p; pTx0), abbreviate xi = x(pi) = f(pi; piTxi0) =
f(pi; wi) and observe that our consumers behavior follows maxU(x) s.t. pTx �
w. To verify WARP we see from the left side of the implication that x1 is
feasible at (p2; w2), therefore we must have U(x2) � U(x1). If we assume that
the implication in the de�nition of WARP does not hold we get the contradiction
that x2 is strictly feasible at (p1; w1) and thus U(x1) > U(x2).

From WARP we derive in a second step pseudo-monotonicity of the individual
excess. The relation

p2Tf(p1; w1) � w2 ) p1Tf(p2; w2) � w1

can be written in the notation of (1.6) as

p2T (x(p1)� x0) � 0 ) p1T (x(p2)� x0) � 0; (3.12)

or, using the excess e(p) = x0 � x(p), we �nd p2T e(p1) � 0 ) p1T e(p2) � 0:
With the budget identity pT e(p) = 0 we �nally conclude

e(p1)T (p2 � p1) � 0 ) e(p2)T (p2 � p1) � 0:

Essential in this derivation of pseudo-monotonicity of e(p) is the price-indepen-
dence of production. This holds e.g. for a pure exchange economy, but as soon
as production is allowed, the identity w = pTx0 is extended to w = pT (x0+ y(p))
and consequently we �nd instead of (3.12)

p2T (x(p1)� x0 � y(p2)) � 0 ) p1T (x(p2)� x0 � y(p1)) � 0;

where x(p1)�x0�y(p2) can no more be interpreted as �e(p1) except for the case
when y(p) is in fact independent of the price.

Numerically we �nd|due to the production in problem (1.6)|price pairs violat-
ing pseudo-monotonicity of the excess in case of MMmr. Nevertheless, WARP still
holds if w = w(p) = pT (x0+y(p)) is dependent on the price, i.e. for problem (1.6)
in its full generality. But because an agent of the form (1.6) includes production,
pseudo-monotonicity of the individual excess can not be deduced.

3.3.2 Monotonicity of Demand in the Case of a Contin-

uum of Equal Consumers

Coming back to the question of monotonicity of the demand f(p; w) we �nd in
Hildenbrand [50] a �rst positive answer. Let f be an individual demand function,
i.e. f ful�lls WARP and the budget identity pTf(p; w) = w holds for all p > 0
and w � 0. Consider the following situation; there is a continuum of consumers
with respect to w described by the same individual demand function f(p; w), and
furthermore the distribution of individual expenditure described by the density



3.3 Monotonicity of market demand 41

� : IR+ ! IR+ is a decreasing function with
R1
0
�(w)dw = 1 and

R1
0
w�(w)dw <

1. Then the mean (market) demand function is de�ned by

F (p) =

Z 1

0

f(p; w)�(w)dw: (3.13)

Note that in this formulation � and w are independent of the price. The following
result can be shown.

Theorem 3.9 ([50], Theorem 1) For every individual demand function f and for
every decreasing density �, the mean demand function F from (3.13) is monotone,
i.e, (p1 � p2)T (F (p1)� F (p2)) � 0 for every p1 > 0, p2 > 0.

Hence, under the given assumptions we can achieve a stronger property by ag-
gregation than the individual demand functions enjoy. Note also that part of the
assumptions can be relaxed, e.g. � may be increasing in the beginning to some
extend, or there may be a �nite set of di�erent demand functions.

But comparing this situation with problem (1.6) we �nd nevertheless �rst of all
only �nitely many consumers (quite few indeed). Secondly, the demand functions
are usually mutually di�erent, and thirdly w depends strongly on p. Thus, even
though xi(p) derived from (1.6) is an individual demand function, we cannot
derive monotonicity of demand.

3.3.3 Non-Monotonicity of the Slutsky Compensated De-

mand Function

Contrary to the other parts this section documents non-

x1

x2

�x xs
x

Utility level sets

b0 : �pTx = �w

b2 : pTx = �w

b1 : pTx = w

Figure 3.7: Slutsky decomposi-
tion of demand.

monotonicity of an approximate demand function called
Slutsky compensated demand function (or `Slutsky de-
mand' for short). Two reasons motivate this; �rst the
so called Slutsky decomposition (of demand), which un-
derlies the Slutsky demand, is needed in the next sec-
tion, and secondly the Jacobian of the Slutsky demand
is negative semide�nite (n.s.d.). Because this led various
authors erroneously to the conclusion that the Slutsky
demand function is monotone (cf. Eatwell, Milgate and
Newman [22, pp. 544]), the subtleties involved will brie
y
be outlined.

The object under investigation is an individual, continu-
ously di�erentiable demand function f(p; w) with a con-
stant (price independent) outlay w. Assume f(p; w) is analyzed around a given
point �x = f(�p; �w) where �pT �x = �w. Then the Slutsky demand function, de�ned by
xs�x : p 7! f(p; pT �x), re
ects the change in demand when the price changes under
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the assumption of constant purchasing power, that is, the outlay is adapted to
keep �x just a�ordable. Graphically this corresponds to a rotation of the budget
constraint around �x in Figure 3.7. While �x ! xs can be interpreted as (Slut-
sky) substitution e�ect, xs ! x is constructed by a parallel shift of the budget
constraint b1 ! b2 to regain the old outlay in the new price setting p and called
income e�ect. Looking at our model (1.6) we have w = pT (x0 + y(p)); to sim-
plify assume that production y is price independent yielding a demand function
f(p; pT �x0) with �x0 := x0+y. Thus at �x0 the Slutsky demand function xs�x0(p) and
the simpli�ed demand function f(p; pT �x0) stemming from (1.6) coincide, and one
is motivated to use xs�x(p) as an approximation for f(p; pT �x0) in a neighborhood
of �p, where �x = f(�p; �pT �x0). Di�erentiating the Slutsky compensated demand
function xs�x(p) gives

rpx
s
�x(p) �p = rpf(p; p

T �x)
�p
= rpf(p; �w) �p + rwf(�p; w) �w

�xT ; (3.14)

where Sf := rpx
s
�x(p) �p and Af := rwf(�p; w) �w�x

T are called `Slutsky substitution
matrix' and `matrix of income e�ects' respectively. Now Hildenbrand [51, p. 176]
proves equivalence of WARP and n.s.d. of Sf under the assumption of budget
identity, i.e. at points (�p; �x) where xs�x(�p) = �x. Based on the �rst equality in (3.14)
one might hope to exploit n.s.d. of Sf to prove monotonicity of f(p; pT �x) for all
�x and all p in a neighborhood of �p by using the Mean Value Theorem,

(f�x(p)� f�x(�p))T (p� �p) = (p� �p)Trpf�x(p) �
T (p� �p);

where the notation f�x(p) abbreviates f(p; p
T �x), and � is chosen appropriately

from the interval [p; �p]. It turns out, however, that n.s.d. of rpf�x(p) � can not
be deduced from n.s.d. of Sf because the latter holds only at points (�p; �x) where
xs�x(�p) = �x, and hence can be false at p = �. It is even possible to construct
individual demand functions of the form f(p; pT �x0) which are not monotone, see
Eatwell et al [22, p. 545].

3.3.4 Monotonicity of Demand in the Case of a Large

Population of Su�ciently Heterogeneous Consumers

In the previous section we approximated the real demand function f(p; w(p))
stemming from problem (1.6) by requiring price-independence of production y
and thereby relating it to the Slutsky demand function. But we can as well
approximate f(p; w(p)) by the usual demand function f(p; w) where w is price-
independent, that is constant. Given a �nite population of consumers with indi-
vidual continuously di�erentiable demand functions f i(p; wi), where wi is price-
independent, the mean market demand function F (p) is de�ned by

F (p) =
1

jIj
X
i2I

f i(p; wi); (3.15)
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and again we ask if F (p) is monotone. A positive answer, based on the main ideas
in Hildenbrand [51], is outlined in the following. The reasoning starts with the
Slutsky decomposition stated in (3.14). The goal is to raise evidence for n.s.d. of
rpF (p) and we rewrite for that purpose (3.14) in the form

rpF (p) = S(p)� A(p); (3.16)

where S(p) and A(p) represent the corresponding mean over the set of consumers
of Sf(p) and Af(p) respectively. From the last section we know Sf(p) and thus
S(p) is n.s.d. and concentrate therefore here on conditions implying positive semi-
de�niteness (p.s.d.) of A(p). To begin with note that A(p) is p.s.d. if and only if
M(p) := A(p) + A(p)T is. From (3.14) and (3.15) we deduce

M(p) =
1

jIj
X
i2I
rwi

�
f i(p; wi)f i(p; wi)T

�
= lim

h!0

1

h

�
m2ff i(p; wi + h)g �m2ff i(p; wi)g� ;

where m2 is the second moment of a cloud of vectors with components de�ned
by

m2
jkff i(p; wi)g :=

1

jIj
X
i2I

f ij(p; w
i)f ik(p; w

i):

Observe that the second moment of any cloud of vectors is p.s.d. (if in the
de�nition of m2 every summand is p.s.d. then also the sum, and the former
is equivalent to requiring that uuT is p.s.d. for any u 2 IRn which is trivial).
Therefore we mean by `increasing spread of consumers demand' that for every
su�ciently small h > 0 the matrix m2ff i(p; wi + h)g � m2ff i(p; wi)g is p.s.d.,
and this is a su�cient condition to have a p.s.d. A(p), and thus monotonicity of
the mean market demand.

One plausible argument why M(p) should be p.s.d. stems from the observation
that an increase in income also increases the variance of demand (heteroscedastic-
ity). However, it must be fundamentally acknowledged that empirical evidence is
needed here. Interestingly enough this shows also that the mean market demand
can enjoy properties that are non-existent in any of the underlying individual
demand functions. In Hildenbrand [51] this concept is much more elaborated
and made applicable to real world data, and empirically veri�ed using data sets
from the United Kingdom and France.

3.3.5 Monotonicity of Demand Implied by a Su�ciently

Small Curvature of Utility

Another possibility, due to Mitjuschin and Polterovich (1978, cited in [51]), is
based on the insight that by imposing certain conditions on the utility U , the
resulting individual substitution e�ect Sf(p), and thus S(p), can be made su�-
ciently negative de�nite in order to guarantee n.s.d. of rpF (p).
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Proposition 3.10 (cf. [51]) Let f(p; w) denote a C1 demand function that is
derived from a C2, monotone, and concave utility function U . If

�x
Tr2U(x)x

xTrU(x) < 4 8 x 2 IRn
++;

then the function f(p; w) is strictly monotone in p for w > 0, that is,

(f(p1; w)� f(p2; w))T (p1 � p2) < 0 8 p1 6= p2 2 IRn
++:

3.3.6 Monotonicity of Demand Implied by Homothetic

Individual Demand Functions

Instead of making Sf su�ciently negative de�nite we ask now for conditions im-
plying Af to be p.s.d. Assume for that purpose that an individual demand func-
tion f(p; w) is homogeneous of degree one in w, that is, f( : ; �w) = �f( : ; w) for
all � � 0. Using Euler's equation wrwf( : ; w) = f( : ; w) we then have collinearity
of rwf( : ; w) and f( : ; w) which is equivalent with p.s.d. of rwf( : ; w)f( : ; w)

T =
Af . This can be extended to so called homothetic functions which are produced
by applying a strictly increasing transformation to a homogeneous function. It is
exactly this class of homothetic demand functions, characterized by the collinear-
ity property of rwf and f , which guarantee Af to be p.s.d.

3.3.7 Conclusions

The cases above can be seen as di�erent approximations to the `real' demand (or
excess) function resulting from a set of agents of the form (1.6). Though none
of them is equivalent to (1.6), they support the claim of Dafermos [16] cited in
the beginning. Speci�cally, it is interesting to �nd pseudo-monotonicity of the
individual excess (and thereby the aggregated excess) given price-independence
of production. Further reaching, however, are the concepts relying on su�ciently
large sets of heterogeneous consumers where the mean variance of demand in-
creases with rising w. This justi�es hope to gain (pseudo-)monotonicity of the
excess for models comprising an increasingly number of agents of the form (1.6).



Chapter 4

Der Türhüter stellt öfters kleine Verhöre mit ihm an, fragt
ihn über seine Heimat aus und nach vielem andern, es
sind aber teilnahmslose Fragen, wie sie grosse Herren
stellen, und zum Schluss sagt er ihm immer wieder, dass
er ihn noch nicht einlassen könne. Der Mann, der sich
für seine Reise mit vielem ausgerüstet hat, verwendet
alles, und sei es noch so wertvoll, um den Türhüter zu
bestechen. Dieser nimmt zwar alles an, aber sagt dabei:
“Ich nehme es nur an, damit du nicht glaubst, etwas
versäumt zu haben.” F. K. [58]

Solving EEP Using the
Negishi-Approach

In this chapter the conceptual Negishi algorithm (Algorithm 1 page 16) is dis-
cussed more in depth. First, Section 4.1 starts by comparing the VIP- with the
Negishi-view. Next, in Section 4.2 two strategies are presented on how the weight
vector �k can be updated, thereby concreting the conceptual Negishi Algorithm.
Because the algorithms solve in each iteration a Negishi-welfare problem, Sec-
tion 4.3 treats two undesirable properties of the Negishi-welfare problem: (i) to
actually built it requires in general a global reformulation of all underlying indi-
vidual utility maximization problems, and (ii) to solve the resulting large welfare
problem may be intractable. Both problems are simultaneously resolved by a
technique called decomposition and for which an algorithm is given.

Contributions comprise the suggestion of the �-Negishi-Algorithm, the analysis of
the t-Negishi-Algorithm in case of MMmr (see Appendix E.2.2), and the discussion
of unboundedness of the Lagrangian in Section 4.3.2.

4.1 Comparing the Negishi- and VIP-View

As stated in Theorem 2.5 there are relations between the VIP- and the Negishi
problem1 motivating the notion of `primal' problem for the VIP-approach and
`dual' for the Negishi problem.

Figure 4.1 depicts symbolically the Negishi- and the VIP-approach; the Negishi-
view is located to the left, whereas the VIP-view is presented to the right. Ur

represents the objective function (utility) and Kr the set of constraints (feasi-
bility set) for r 2 R from problem (1.5), or, more generally, from (1.6), without

1While the Negishi-welfare problem is given in De�nition 1.2, the `Negishi problem' is then
to �nd a weight vector �, such that a solution of the related welfare problem represents an
equilibrium, cf. Theorem 2.5.
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Negishi: overall welfare problem

max �1U1 + : : : + �RUR

s.t. e1 + : : : + eR � 0

K1

. . .

KR

p

1=�

VIP: independent regional problems

max U1 : : : max UR

s.t. pT e1 � 0 : : : s.t. pT eR � 0

K1

. . .

KR

� pT er

Space of regions

p e

Space of goods

Figure 4.1: Dual relationship between the VIP- and Negishi-approach.

the budget constraint. Here the index set R instead of I is chosen in view of our
later application to a multiregional problem. There are three levels of gray: light
gray is the Negishi-welfare problem integrating all individual (regional) problems
in one large optimization problem, medium gray are the individual structures
which|in case of the VIP-view|are essentially the individual utility maximiza-
tion problems (1.5) or (1.6), and �nally, emphasized dark-gray are the excess-
related constraints. The latter constraints account on the one hand for the main
di�erence between the individual problem (1.6) and the EEP and, on the other
hand, are central for the dual relationship between the Negishi- and the VIP-
view. In the VIP-part the surrounding box is only dashed and not shaded to
underline its consistence of independent subproblems.

Now Theorem 2.5 states that in an equilibrium the dual multiplier vector p of
the excess constraint in the welfare problem is exactly an equilibrium price, mo-
tivating the dotted arrow from left to right. Reversing the view, the inverse of
the dual multipliers � of the budget constraint in the VIP-sub-problems form a
set of equilibrium Negishi weights. This is indicated by the dotted arrows from
right to left labeled `1=�'. Note that scaling � or p by any positive scalar does
not a�ect its equilibrium properties; this permits keeping both � and p in the
unit simplex � of appropriate dimensionality.

From De�nition 1.4 it follows that p is an equilibrium price if and only if the re-
sulting excess e from solving all regional problems in the VIP-box is non-negative
and complementarity with the price holds. This is suggested by the bottom right
circle in Figure 4.1, where in one iteration e(p) is computed, and depending on
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its outcome p adjusted. As for the Negishi-view Theorem 2.5 together with De�-
nition 1.4 claims that � is an equilibrium weight vector if and only if pT er = 0 for
all r 2 R, where p is the dual multiplier vector of the excess constraint. This leads
to the bottom left circle where � is judged and updated following the outcome
of p(�)T er(�) for all r 2 R.
Denoting by the index g any good, an intuitive approach for updating �r or pg sim-
ply looks at the corresponding test-quantities p(�)T er(�) and eg(p) respectively:
increase �r if p(�)T er(�) > 0 and decrease it otherwise, and do the analogue
with reversed inequality in case of pg and eg(p). Economically this means in the
welfare view that a region (consumer) should have more weight if it did not use
all the wealth it has, and decrease the weight of those exceeding there budgets
(p(�)Ter(�) < 0). In the VIP-world a price-component pg is increased if demand
exceeds supply (eg(p) < 0) and vice versa.

This is the basic idea behind the so called `tâtonnement'-process which was one of
the �rst algorithmic concepts used in computational economics, cf. Ginsburgh and
Waelbroeck [36]. A direct application of such a tâtonnement-process, however,
is not only theoretically unsatisfactory, but can yield poor results in practice too
(mainly because it ignores cross-e�ects). As for the VIP-approach, Algorithm 2
based on the analytic center or center of gravity is more robust. Similarly, the
�-Negishi algorithm extends also the tâtonnement-process and convinces on our
practical problem MMmr. Nevertheless, both the VIP- and the Negishi-algorithm
used in this work are under the given structures only heuristics; for a possible
exact algorithm based on a �xed point approach see e.g. Taheri [99].

Note that on the �rst level the Negishi-approach leads to an algorithm in the
space of the regions or agents, whereas the VIP-view works in the space of goods.
Because the dimensionality of the problem in
uences strongly the computational
e�ciency, this can be of determining importance. However, if the Negishi-welfare
problem is solved using decomposition, the dimensionality of the goods reappears,
cf. Algorithm 6. If this can be handled e�ciently, e.g. in that the number of
goods increases the computational burden comparably slowly, then the Negishi-
approach seems preferable if the number of goods exceeds signi�cantly the number
of regions or agents.

4.2 Two Algorithms

4.2.1 The �-Negishi-Algorithm

As a direct outcome of the previous discussion the �-Negishi-algorithm updates
the weight vector by explicitly computing the dual multiplier of the budget con-
straint in the underlying regional problem.

The heuristic �xed point method given in Algorithm 5 proved to be very contrac-
tive and additionally very robust with respect to starting points. In case of our
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Algorithm 5 �-Negishi-algorithm

(i) Choose a set of initial weights �0 and set k = 0.

(ii) Solve the Negishi-welfare problem and compute thereby the dual price pk.

(iii) Stop if the solution satis�es a stopping criterion, otherwise proceed.

(iv) With the price pk solve the utility maximization problem of all economic
agents ((1.5) or (1.6)) and retrieve the dual multipliers �kr of the budget
constraint.

(v) Set k := k + 1 and update the weights by

�kr =
1

�k�1r

P
r2R 1=�

k�1
r

;

return to (ii).

examples it was advantageous to start with a suitable p0 in step (iv). A more in
depth discussion is presented in Appendix E.2.1. Numerical results are presented
in Appendix F.4 and F.5.

4.2.2 The t-Negishi-Algorithm

Another approach to update the Negishi-weights was successfully used e.g. in 5R,
a �ve region model based on simpli�ed Markal-Macro models and described in
Manne and Rutherford [75]. The central idea is to estimate �, the dual multipliers
of the budget constraint, from a solution of the welfare problem. Such a scheme
avoids solving the regional models (1.6) in every iteration of Algorithm 5.

Because deriving such estimators depends on the concrete structure of the model,
it will be done in Appendix E.2.2 for MMmr.

A �nal note on the naming; t is motivated from the fact that the resulting scheme
is a `tâtonnement' strategy, where the old weight is essentially updated by the
(weighted) addition of the budget excess. That is, �k+1

r = �kr + wpkT ekr with an
appropriate weight w.

4.3 Decomposing the Negishi-Welfare Problem

In every iteration of the [�; t]-Negishi-algorithm we face a Negishi-welfare prob-
lem (1.3). It exhibits a typical block-diagonal structure with a few connecting
constraints:
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Variables region 1 region 2 : : : : : : region R
Constraints

objective

excess

region 1

region 2

: : : : : :
. . .

region R

The overall problem can|depending on jRj|grow exceedingly large. If we con-
sider 10 regions with 5000 variables each, the Hessian of the objective contains
50'000� 50'000 = 2:5 � 109 elements; supposing 10% non-zeros using 8 byte pre-
cision, we need for storing alone about 2 gigabyte computer memory, a number
which beats state of the art workstations by a factor of 10.

Besides the need to keep the Negishi-welfare problem tractable for real world
computers we face in the next step the complexity observed in practice (i.e. the
time needed to �nd an approximate solution). Theoretically optimal local meth-
ods for solving nonlinear convex problems require at least O(n log 1

"
) iterations to

�nd an "-approximate solution, where n is the number of variables (dimension of
the problem), see Elster [63]. This implies that at best real world solvers based
on Newton-kind of methods exhibit an increase of computation time of an order
of n3. Even though this is a low order polynomial satisfying theoreticians it can
already forbid to solve large models; to see this assume that it takes 15 minutes
to solve one regional problem (a typical value in our case), then the same solver
needs 103 �15 = 15000 minutes or about 250 hours|more than 10 days!|to solve
the Negishi welfare problem with 10 regions.

A �nal obstacle speci�c to our situation is that the overall Negishi-welfare problem
can hardly be set up; each region is a large and complex piece of GAMS-code
consisting of over 100 �les, and to put together several regions would require to
extend the whole code by a regional index|an enormous task taking months of
work.2 Even worse, one would run into update problems: every time the original
regional code is changed this has to be followed up in the Negishi-code.

For all these reasons we are thus seeking for a procedure which allows to solve
the Negishi-welfare problem by solving the underlying independent and (almost)
unchanged regional problems. It is exactly this integrative aspect which obliged
us to use decomposition techniques. The other side of the medal|the usual one

2At least in case of GAMS there are attempts to extend the system to handle such situations
in a transparent way, i.e. without requiring to change the underlying model code. But in general
the problem still exists: how to design an algorithm for solving the Negishi-welfare problem
where the underlying regional problems are left as much as possible unchanged.
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where large problems are split into pieces and thereby the computational burden
reduced|attracts increasingly attention, cf. [37, 30, 31].

The basic technique of dualizing common constraints is presented su�ciently gen-
eral in Appendix A.2. In the rest of this chapter we apply this to the separable
structure of the Negishi-welfare problem and subsequently solve it by using AC-
CPM, a cutting plane method, cf. Go�n, Haurie and Vial [38, 37]. The section
concludes with a complexity result due to Nesterov [85].

4.3.1 The Lagrangian Dual Problem

The Negishi-welfare problem (1.3) (or (7.9) in case of MMmr) can be written as

max �1U1(v1) + : : : : : : + �RUR(vR)

s.t. e1(v1) + : : : : : : + eR(vR) � 0;

g1(v1) � 0;

h1(v1) = 0;
. . .

gR(vR) � 0;

hR(vR) = 0:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(4.1)

The constraints of the underlying regional subproblems de�neKr := fvr j gr(vr) �
0; hr(vr) = 0g; abbreviating further the objective or(vr) := �rUr(vr) and the
overall feasible set by K := �r2RKr, problem (4.1) can be written in the form

max o1(v1) + : : : : : : + oR(vR)

s.t. e1(v1) + : : : : : : + eR(vR) � 0;

v1 2 K1;
. . .

vR 2 KR:

The Lagrangian dual function (cf. Appendix A.2) is then de�ned as

�(p) := max
v2K

�X
r2R

or(vr) +
X
r2R

pT er(vr)
�

=
X
r2R

max
vr2Kr

�
or(vr) + pT er(vr)

�
; (4.2)

where p has the dimension d of the image set of e(v). The Lagrangian dual
problem following (A.5) is

min
p�0

�(p): (4.3)
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Given Condition (A.6) is satis�ed, Theorem A.3 and A.4 state that it is equivalent
either to solve the primal problem (4.1) or the dual problem (4.3).3 In view of
(4.2) and the introduction we observe that the evaluation of �(p) for a given p
results in jRj independent maximization problems of the form

max
vr2Kr

�
or(vr) + pT er(vr)

�
which coincide with the original regional models up to the Negishi multiplier
hidden in or and the additional term pT er(vr) in the objective. The remaining
question is how to solve the dual problem (4.3). Of course, if we want to be
successful we need in general convexity of � together with information about
(sub-)gradients. For that purpose let P := fp � 0 j �(p) < 1g denote the set
where � is �nite and write succinctly o(v) =

P
r2R or(vr), e(v) =

P
r2R er(vr) and

�nally �(p; v) := o(v) + pT e(v). The next lemma proves convexity of �, and so P
is also convex.

Lemma 4.1 (for similar results see Bazaraa and Shetty [7]) � is convex; fur-
thermore, if p 2 P and v� 2 argmaxv2K �(p; v), then e(v

�) is a subgradient of �
at p.

To show convexity of � choose � 2 (0; 1) and take any prices p; q � 0; we then
have

�(�p+ (1� �)q) = max
v2K
fo(v) + [�p+ (1� �)q]Te(v)g

= max
v2K
f�[o(v) + pT e(v)] + (1� �)[o(v) + qT e(v)]g

� �max
v2K

�(p; v) + (1� �)max
v2K

�(q; v)

= ��(p) + (1� �)�(q):

To see the second claim concerning e(v�) being a subgradient of � at p, choose
any q � 0; then

�(q) = max
v2K

�(q; v)

� �(q; v�)

= o(v�) + �pT e(v�)

= o(v�) + pT e(v�)� pT e(v�) + �pT e(v�)

= �(p) + e(v�)T (q � p):
3To make this statement precise note that a solution p� of the dual problem (4.3) has

implicitly attached a primal `solution' �v 2 K by means of (4.2). In general �v is not a solution
to (4.1), but once p� is known it can be used within a derived linear programming problem to
approximate a primal solution v� 2 K. For a detailed discussion see Bazaraa and Shetty [7,
Section 6.5].
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From this lemma we know how to linearly approximate �(p) by (sub-)gradient
cuts within P . But this is not su�cient to solve (4.3) because for a p � 0 outside
P we have so far no information in what direction the minimum of �(p) might
be, or, to be more modest, where P is located. This topic is brie
y discussed in
the next section.

4.3.2 Unboundedness of the Lagrangian Dual

To begin with note that unboundedness of �(p) is of practical relevance because
the additional term pT e(v) in the objective can turn bounded problems into
unbounded ones. This is speci�cally true in case of the subproblems in the
Negishi-decomposition approach of MMmr. Given p with �(p) =1, in this section
we try to derive supporting hyperplanes of P passing through p. Such a process
can yield an outer approximation of P .

In the sequel we make for all r 2 R the following assumptions:

Assumption 4.1 or(vr) and er(vr) are continuously di�erentiable, concave on
Kr and �nite if vr is �nite. Furthermore, Kr is non-empty, convex and closed.

From these assumptions the following lemma can be deduced allowing to focus
the further discussion on a single region r 2 R.

Lemma 4.2 Choose any p � 0; then �(p) is �nite if and only if �r(p) :=
maxvr2Krfor(vr) + pT er(vr)g is �nite for all r 2 R.

This lemma implies that if we choose any r 2 R and �nd a (linear) constraint
which cuts away a part of IRd (with d the dimension of P ) where �r(p) =1, then
the remaining part contains P . Or to state it di�erently: every subproblem can
independently generate so called feasibility-cuts which form an outer approxima-
tion of P . In the following discussion we concentrate therefore on an arbitrary
r 2 R.
From Assumption 4.1 follows boundedness of �r(p) for any �nite p � 0 if Kr is
also bounded. A possible strategy for practitioners could thus consist of imposing
an overall box constraint, which is reasonable for `real' world problems.4

In case of unbounded Kr � IRnr we call a vector dr 2 IRn a direction of Kr if
vr + �dr 2 Kr for all � � 0. Additionally, we call a feasible point extremal if it
can not be represented as a proper (i.e. � 2 (0; 1)) convex combination of two

4This strategy is also present in typical solvers for nonlinear convex optimization problems;
usually the variable values are bounded to a `reasonable' large box like �1020 as is the case
for GAMS-related solvers. In such a situation one can in principle ignore any `unboundedness-
message' of the solver and simply use the subgradient at the point where the solution process
was stopped which, without harm, may happen at the boundary of the large box.
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di�erent feasible points. A direction is called extremal if it can not be represented
as a positive combination of two di�erent directions.

Assuming Kr has directions we ask how P can be characterized. As for notation,
rer(vr) or simply rer is the di�erential of the vector-valued map er with respect
to vr; usually this matrix is called Jacobian.

Lemma 4.3 Let both or and er be a�ne and Assumptions 4.1 hold; if p 2 P
then for any direction dr of Kr we have

(ror +rerTp)Tdr � 0: (4.4)

Assume on the contrary p 2 P and (ror +rerTp)Tdr > 0; From a�nity of or
and er we then have

or(vr + �dr) + pT er(vr + �dr) = or(vr) + pT er(vr) + �(ror +rerTp)Tdr;

where �(ror+rerTp)Tdr can be made arbitrarily large by increasing �. But this
contradicts the assumption p 2 P .
Because (4.4) holds for all p 2 P , Lemma 4.3 gives an outer approximation of
P if all (extremal) directions dr of Kr are checked. To reverse the implication
and construct thereby an inner approximation of P , it is necessary to strengthen
(4.4) as is shown in the example illustrated in Figure 4.2 below.

The notion concave for a vector-valued function used below is de�ned by concavity
of all its components.

Lemma 4.4 Let both or and er be concave and Assumptions 4.1 hold; then p 2 P
if there is a vr 2 Kr such that for all directions dr of Kr we have

(ror(vr) +rer(vr)Tp)Tdr < 0: (4.5)

The proof will given by showing the equivalent statement `p 62 P =) 8vr 2 Kr

there is a direction dr of Kr with (ror(vr) + rer(vr)Tp)Tdr � 0'. Choose any
v1r 2 Kr; from p 62 P we know there exists a continuing sequence vnr 2 Kr, n � 2,
such that or(v

n
r ) + pT er(v

n
r ) ! 1 for n ! 1, and such that v1r 6= vnr 8n � 2.

This implies (from the previous assumption that or and er are �nite for �nite vr)
that vnr must tend to in�nity; de�ning for n � 2

dnr :=
vnr � v1r
kvnr � v1rk

;

we observe that dnr is a sequence on the unit-ball, and thus has a convergent
subsequence which|without loss of generality|is assumed to be dnr with limit
d1r . Note that due to closedness of Kr d

1
r is a direction.
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Setting �n := kvnr � v1rk we derive from concavity of or and er

or(v
n
r ) + pT er(v

n
r ) = or(v

1
r + �ndnr ) + pT er(v

1
r + �ndnr )

� or(v
1
r ) + pT er(v

1
r) + �n(ror(v1r) +rer(v1r)Tp)Tdnr ;

and thus (ror(v1r) +rer(v1r)Tp)Tdnr > 0 for all su�ciently large n which implies
(ror(v1r) +rer(v1r)Tp)Td1r � 0.

To see why (4.5) can not be relaxed to `�' consider the follow-

x

y

Kr

ror + pTrer = ( 10 )

dr = ( 01 ) s

Figure 4.2: Direction and
unboundedness.

ing example, where both or and er are assumed a�ne. Choose
as primal feasible set Kr := f(x; y) j y � x2g in IR2 which is
simply the epigraph of a paraboloid. The only extremal di-
rection is dr = (0; 1); if p is such that (ror +rerTp) = (1; 0)
then (4.5) holds with equality, that is, (ror+rerTp)Tdr = 0.
But the sequence dn := (n; n2) makes (ror +rerTp)Tdn = n
diverge to in�nity, implying by virtue of a�nity or(d

n) +
pT er(d

n)!1.

To verify Lemma 4.4 in this example, let us now assume (ror+
rerTp)Tdr < 0, which implies a negative y-component of s :=
(ror +rerTp). The maximum of or(vr)+ p

T er(vr) over Kr is
then �nite and achieved at the point where s equals the normal of a supporting
plane as is indicated in Figure 4.2.

Anticipating Algorithm 6 which is used to solve (4.3), the following observation
is useful. Assume P is characterized by the cuts (4.4) formed by all extremal
directions, and denote this outer approximation of P by �P . Then any inner
point of �P satis�es in fact (4.5). Hence, once �P is available Algorithm 6 which
uses analytic centers su�ers no more from unboundedness of the Lagrangian.

In practice, �P will be iteratively built up: Starting with �P 0 := f p 2 IRd
+ j p �

Me g for a su�ciently large M , �P k is reduced to �P k+1 := �P k \ (4:4) whenever a
direction dkr is detected, and otherwise left unchanged. Now, if

�P k is a `su�ciently
close' approximation to P and our inner test points pk are `su�ciently far away'
from the boundaries of �P k, we are in the happy situation that �(pk) <1 despite
the possibility �P knP 6= ;.
Nevertheless, Lemma 4.4 can be sharpened; one possible way is by requiring
boundedness of the extremal points Ke

r of Kr for all r 2 R. Such a Kr can
be seen as algebraic sum of a bounded convex set and a convex cone; to give
an example think of the paraboloid in Figure 4.2 where the convex bounded
set is changed to Q = f(x; y) j y � x2 ^ y � 1g and extended by the cone
C = fd j d = �(�1; 2) + �(1; 2); � � 0; � � 0g.
Denote by the operator `conv' the convex hull of a set, let Ke

r be the (bounded)
set of extremal points of Kr, and let C be a cone such that Kr = conv(Ke

r ) +C.
For any vr 2 Kr we then have the existence of a v0r 2 conv(Ke

r ) and a d0r 2 C
such that vr = v0r + d0r. With nr the dimension of Kr we can further derive from
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Carath�eodorys Theorem the existence of nr + 1 extremal points vir 2 Ke
r such

that v0r can be written as convex combination of the vir, i.e. there exists a vector
of weights � � 0,

Pnr+1
i=1 �i = 1, such that v0r =

Pnr+1
i=1 �iv

i
r.

Based on these prerequisites the following characterization of P can be estab-
lished.

Lemma 4.5 Let Assumption 4.1 hold and let Kr = conv(Ke
r )+C be the algebraic

sum of a bounded convex set conv(Ke
r ) plus a cone C. We then have p 2 P if

there is a vr 2 conv(Ke
r ) such that for all directions dr of Kr

(ror(vr) +rer(vr)Tp)Tdr � 0: (4.6)

We demonstrate the equivalent implication `p 62 P ) 8vr 2 conv(Ke
r ) there

exists a direction dr 2 C with (ror(vr) + rer(vr)Tp)Tdr > 0' (cf. the proof of
Lemma 4.4).

Choose any vr 2 conv(Ke
r ) and de�ne

M := sup
wr2 conv(Ke

r )

or(wr) + pT er(wr):

which is �nite from Assumption 4.1.

From boundedness of Ke
r we have a �nite diameter �(Ke

r ) of the set Ke
r , and

furthermore from Assumption 4.1 follows the existence of a �nite upper bound
L for both kror(vr)k and kre(vr)k if vr is in conv(Ke

r ). As usual, the matrix-
norm kre(vr)k is de�ned by the maximum of the product jpTre(vr)vrj over all
unit-vectors p and vr.

Now p 62 P implies the existence of a sequence vnr 2 Kr, v
n
r ! 1, such that

or(v
n
r ) + pT er(v

n
r )!1 for n!1. Therefore there exists an n such that

or(v
n
r ) + pT er(v

n
r ) > L(1 + kpk)�(Ke

r ) +M:

Let vnr = v0r + dr for a suitable v
0
r 2 conv(Ke

r ) and dr 2 C. Seen from the chosen
vr 2 conv(Ke

r ) we then have

L(1 + kpk)�(Ke
r ) +M

< or(v
n
r ) + pT er(v

n
r )

= or(vr + (v0r � vr) + dr) + pT er(vr + (v0r � vr) + dr)

� or(vr) + pT er(vr) + (ror(vr) +rer(vr)Tp)T ((v0r � vr) + dr)

= or(vr) + pT er(vr) + (ror(vr) +rer(vr)Tp)T (v0r � vr)
+ (ror(vr) +rer(vr)Tp)Tdr

� M + L(1 + kpk)�(Ke
r ) + (ror(vr) +rer(vr)Tp)Tdr;

and hence 0 < (ror(vr) +rer(vr)Tp)Tdr which proves the lemma.
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This statement can be made more useful by observing that from Carath�eodorys
Theorem for cones it is su�cient to restrict condition (4.6) to extremal directions
only.

From the Lemmata 4.3 and 4.5 the following corollary follows.

Corollary 4.6 Let Assumption 4.1 hold, let Kr = conv(Ke
r )+C be the algebraic

sum of a bounded convex set conv(Ke
r ) plus a cone C, and let both or and er be

a�ne. We then have p 2 P if and only if for all directions dr of Kr

(ror +rerTp)Tdr � 0:

4.3.3 Solving the Lagrangian Dual Problem

To solve (4.3) we abbreviate (sub-)gradients of �(p) at pk by gk, i.e. gk = g(pk) =
e(vk), where vk 2 argmaxv2K(o(v) + pTk e(v)).

The Proximal Analytic Barrier Method

This section is based on Nesterov [85]. Choose a constant � � 7, and a starting
point p0 which satis�es kp0�p�k � � for a solution p� and a constant �. Assuming
furthermore B1:1��(p0) � P and kg(p)k � L for all p : kp � p0k � 1:1 � � for a
suitable constant L, the so called analytic barrier is de�ned to be

F0(p) :=
�

2R2
kp� p0k2;

Fk(p) := Fk�1(p) +
1

2R2
kp� p0k2 � log(gTk�1(pk�1 � p)); k 2 IN:

Based on this strictly convex barrier Fk(p), the next iterate is then

pk := argmin
p

Fk(p); k 2 IN0;

where p is varied over the interior of the polytope fp j gTi (pi � p)) � 0; i =
0; : : : ; k � 1g. It can be shown that kpk � p0k � 1:1 � � and so gk is well de�ned
for all k. Using the notation ��k = argmini�k �(pi) and �

� = �(p�) it is shown in
Nesterov [85] that for all k 2 IN0

��k � �� � c(�)L�
e�=(2(k+1))

p
� + k + 1

;

where c(�) is some constant depending on �. Hence the gap ��k � �� is asymp-
totically decreased at a rate of at least 1=

p
k. Also remarkable in this result is

its independence of the problem dimension d. In practical problems, however, �
and L might have to grow with d; e.g. to include the unit cube � grows with

p
d.

Finally note that this convergence result must be multiplied with the cost of the
oracle, that is, in our case the time required to compute e(p).



4.3 Decomposing the Negishi-welfare problem 57

The Analytic Center Cutting Plane Method (ACCPM)

This scheme described in [37, 38, 39] and used in our implementation of the
Negishi-algorithm has a number of good properties: it gives an upper bound
on ��k � ��, it handles unbounded directions in case of linear objectives or(vr) +
pT er(vr), and it speeds up convergence by using multiple (sub-)gradient cuts in
each iteration. A convergence analysis for one or two simultaneous cuts can
be found in Go�n and Vial [40, 41]. Let vkr := argmaxvr2Kr

�r(pk; vr), and
vk := (vk1 ; : : : ; v

k
R), then from Lemma 4.1 we know that e(vk) is a (sub-)gradient

of �(p) at pk:

�(p) � �(pk) + (p� pk)T e(vk)
=
X
r2R

�
�r(pk; v

k
r ) + (p� pk)T er(vkr )

�
:

An obvious lower approximation ��k of � based on a set of test points fp0; : : : ; pkg �
P is therefore

��k(p) := min z1 + : : :+ zR

s.t. zr � �r(pi; v
i
r) + (p� pi)T er(vir); 8r 2 R; i = 0; : : : ; k;

)
(4.7)

which is a linear programming problem. Note that the approximation ��k(p) takes
every regional excess er as separate subgradient into account, whereas for �(p)
only the overall excess gives one subgradient.

Setting ���k := minp�0 ��k(p) (the optimal solution for the approximation with k
test points), the di�erence ��k� ���k � 0 is called duality gap. Because �� � ���k, this
di�erence gives an upper bound on ��k � �� which we want to make su�ciently
small. Of course ��k � ���k depends on the set of test points; if `su�ciently many'
of them are close to p�, the approximation quality of ��k increases and we observe
hopefully ��k � ���k & 0.

To make ACCPM applicable the following is assumed:

(i) There are appropriate bounds 0 �
�
Bp � p� � �Bp and

�
Bz � z� � �Bz.

(ii) M := max

�
Bp�p� �Bp

�(p) <1.

In (ii), instead of the unknown exact maximum M , any upper bound can be
chosen. With z = (z1; : : : ; zR) the so called `set of localization' Fk, k � 0, is
de�ned to be

Fk := f(p; z) j
�
Bp � p � �Bp;

�
Bz � z � �Bz;X

r2R
zr � ��k; (4.8)

zr � �r(pi; v
i
r) + (p� pi)T er(vir) 8r 2 R; i = 0; : : : ; k:g: (4.9)
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Algorithm 6 ACCPM for decomposition

(i) Choose " > 0 and set k := 0, p0 :=
1
2
( �Bp �

�
Bp), �

�
�1 :=M .

(ii) For all r 2 R compute a primal solution

vkr 2 argmax
vr2Kr

�r(pk; vr); (4.10)

i.e. solve all regional problems ((7.10) in case of MMmr). Add the resulting
jRj subgradient cuts to Fk; if �k < ��k�1 update also (4.8).

(iii) If ��k � ���k � " STOP.

(iv) Set k := k+1 and compute the new analytic center (pk; zk) of Fk�1; return
to (ii).

Fk can be written in the form fu jAT
ku � sk = ck; sk � 0g where, from k to

k + 1, the matrix A enlarges maximally by jRj columns and the vectors sk and
ck are extended appropriately. Based on these preparations the implemented
decomposition-ACCPM is described in Algorithm 6.

p

��k(p), �(p)
�(p)

p0

��0
��1

p1

a1
��

p�

���1

���0

Figure 4.3: Minimizing the Lagrangian function.

Before giving some remarks on Algorithm 6, a simplifying picture is shown in
Figure 4.3. Starting at p0 the subproblems are solved, i.e. �r(p0) is computed for
all r 2 R; then the linear approximation at (p0; �(p0)) de�nes ��0(p). The set of
localization F0 is depicted light-gray shaded; its analytic center a1 is projected
onto the p-axis yielding p1. In the second iteration the subproblems are solved
again with the new price signal p1 and the resulting subgradient cut at (p1; �(p1))
is inserted in F0 yielding F1. Because �(p1) < ��(p0) � �(p0), the so called `value
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cut' (4.8) is updated and F1 becomes the darker shaded region. ��1(p) is de�ned
as the maximum of ��0(p) and the subgradient cut at (p1; �(p1)). In these two
iterations the duality gap decreases from ��0 � ���0 down to ��1 � ���1.

If in every iteration the minimizer of ��k(p) is taken instead of the analytic center,
the method is called `Kelley's cutting plane method', see Kelley [64], or `Benders-
decomposition', see Benders [8]. An interesting discussion comparing ACCPM
with the Kelley decomposition is contained in du Merle, Go�n and Vial [21],
where also some hints are given on how to improve the e�ciency of ACCPM.

The following remarks are in order:

� The stopping criterion is an `absolute' duality gap; in theoretical analysis
a relative duality gap de�ned by (��k � ���k)=(M � ��) is preferred. In Algo-
rithm 6 this can be attained by dividing " with M � �� (or an estimate of
it). Note also that determining ���k requires solving the LP (4.7), i.e. before
the stopping criterion in step (iii) can be examined an LP has to be solved.

� In general the best iterate (the `solution' returned when stopping in iter-
ation k) is the price pi where i is the last iteration where a value cut was
performed, i.e. the last iteration i where �i < ��i�1 holds.

� Practical experience shows that convergence is improved by putting more
weight on the value cut compared to the subgradient cuts when computing
the thereby weighted analytic center. Going further it can be useful not to
check for any redundancy when inserting constraints of the form (4.8) and
(4.9), but add in every iteration the full jRj + 1 constraints. If identical
constraints are inserted several times this increases the weight of these con-
straints and thereby `pushes away' the subsequent analytic centers, which
is a positive e�ect in the practical behavior of the algorithm.

� The computation of the analytic center for a given Fk can impose some
di�culties despite the fact that it is a smooth, strictly convex minimization
problem. The reason lies in its high nonlinearity; to apply ordinary solvers
thus requires both a good starting point and a suitable scaling. As start-
ing point we choose the center of the maximal inscribed sphere (a linear
programming problem), and scale the problem with the solution at this
point. Another scaling aspect is involved with the shrinkage of Fk; after
some iterations the radius of the largest inscribed sphere of Fk can drop be-
low the feasibility tolerance of ordinary (linear or nonlinear) solvers which
then reject the problem as infeasible. By multiplying each constraint with
an appropriate factor � 1 this problem can be overcome. The factor may
di�er among the constraints because this does not in
uence the location of
the analytic center (the factors drop out of the logarithm into an additive
constant), cf. the discussion concerning implementation in Appendix E.

Instead of computing the analytic center with an existing solver, dedi-
cated solvers can be advantageous. One code was developed in Geneva (see
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http://ecolu-info.unige.ch/�logilab/software/accpm.html) and successfully
applied to a wide range of problems. Speci�cally, it can e�ciently compute
the new analytic center based on the location of the old analytic center if
one or several cuts are introduced.

� The dimension of the localization set Fk using this multiple cut scheme is
d + jRj where d denotes the number of connecting constraints which are
dualized into the objective. If instead of jRj regional subgradient-cuts of
the form (4.9) only the overall excess cut from Lemma 4.1 is used, the
dimension of Fk is reduced to d + 1. To state it di�erently: the price
paid for generating jRj subgradient cuts in each iteration is the increase
in dimensionality of the localization set. But usually the gain outperforms
clearly this price.

� Experiments on certain test problems encourage the use of Kelley decompo-
sition for small dimensional localization sets, whereas in higher dimensional
cases|say more than 20|the analytic center behaves in general better,
cf. [21]. MMmr is solved more e�ciently using analytic centers than Kelley
test points, even though the dimension was typically around 10.

� If or and er are linear for all r 2 R, and the extremal points of Kr are
bounded (as is the case for polyhedral Kr), then we do not need to require
max

�
Bp�p� �Bp

�(p) <1. In this case constraints of the form (4.6) are inserted
into Fk whenever an unbounded subproblem is detected.

� If the original problem is a linear programming problem, there is only a
�nite number of extremal points and directions. Hence ��k(p) will eventually
coincide with �(p) and so the Kelley decomposition terminates with the
exact solution. The ACCPM on the other hand does in general not produce
an exact solution in a �nite number of iterations due to its `interior nature'.



Chapter 5

Während der vielen Jahre beobachtet der Mann den
Türhüter fast ununterbrochen, er vergisst die andern
Türhüter, und dieser erste scheint ihm das einzige Hin-
dernis für den Eintritt in das Gesetz. Er verflucht den
unglücklichen Zufall, in den ersten Jahren rücksichtslos
und laut, später, als er alt wird, brummt er nur noch vor
sich hin. Er wird kindisch, und, da er in dem jahrelangen
Studium des Türhüters auch die Flöhe in seinem Pelzkra-
gen erkannt hat, bittet er auch die Flöhe, ihm zu helfen
und den Türhüter umzustimmen. F. K. [58]

Qualitative Comparison of the
Algorithms

In Chapter 3 and 4 we have described three basic algorithms: (i) Algorithm 2
which is a general cutting plane method (CPM) and called ACCPM if the analytic
center is used as inner point; (ii) Algorithm 4, a homogenized cutting plane
method; and (iii) Algorithm 5 a �xed point heuristic. Here we try to brie
y
compare qualitatively these three algorithms and to position them with respect
to other algorithms from the literature. A more in depth numerical comparison of
the three algorithms, together with some variants, can be found in Appendix F.

A survey on the main algorithmic possibilities solving computable general equi-
librium problems (CGE) faces the curse of speci�city. Due to the hard nature
of CGE-problems, algorithms usually explore as much as possible the speci�c
structure of a given equilibrium problem. This leads to an enormous amount of
di�erent mathematical formulations and even more of di�erent algorithms. For
an incomplete impression the references [47, 46, 100, 33, 9, 20] can serve as a
starting point.

Nevertheless, one ordering criterion for this plethora of concepts is simple and at
the same time of practical relevance: the level of aggregation. Either an algorithm
explores directly the complete structure of the economic agents (disaggregated
view), or the agents are treated as `black-box' oracle where no information about
the internal structure is used by the algorithm (aggregated view).

In principle, the additional information available in the disaggregated view should
make the �rst group of algorithms more e�cient. Among them a very competi-
tive solver is PATH1, where the problem is formulated as a Mixed Complemen-
tarity Problem. At its heart PATH performs Newton-Iterations, and because the
Newton-concept is the key-technique in most other algorithms working in a dis-
aggregated setting, we have chosen PATH as representative for the whole group.

1Developed by Dirkse and Ferris [20], the code is commercially distributed as a solver with
GAMS.
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A central limitation of Newton-based methods is, however, that some convex-
ity properties must be given. Otherwise, �xed point homotopal approaches can
still be applied, where the only requirement is continuity of the functions in-
volved. A prominent example of a homotopal algorithm is OCTASOLV [9]. As
a consequence, the linear, super-linear or even locally quadratic convergence of
Newton-methods is in case of �xed point approaches replaced by simple global
convergence without polynomial complexity bounds.

Concerning algorithms working in the aggregated setting, a �rst question could
be, why one should ignore information which is|in principle|always available.
A �rst theoretical motivation comes from the level of abstraction obtained, allow-
ing an application of oracle-based methods to a broad and divers set of equilib-
rium problems. More decisive, however, can be the practical side of the problem.
The requirement to have all information, including derivatives, available implies
a formulation of the equilibrium problem in a speci�c modeling and solving en-
vironment. If sophisticated models of agents are already existing, the e�ort to
transform them into such a speci�c environment can be intractable.

On top of this, an aggregated view facilitates also a kind of `sensitivity' analysis
on the level of agents. The e�ort to replace an agent-model by another model,
to include more agents or drop some agents can be kept small.

Besides Algorithm 2, 4 and 5 described in this work, we include in Table 5.1
another aggregated-view algorithm due to Taheri, Max�eld and Luenberger [100],
which applies the homotopal solver OCTASOLV to a cleverly designed surplus
function.

Given the necessary structural assumptions are ful�lled, Algorithm 2 and 4 are
pseudo-polynomial only, whereas Newton-based methods working in the disag-
gregated (`d.-a.') setting are polynomial. Furthermore, the speed of convergence

view method assumption measure convergence

d.-a.
Newton-Methods

convex
merit global,

(PATH [20]) function locally superlinear

a
g
g
r
e
g
a
t
e
d
v
ie
w

cu
tt
in
g
p
la
n
e

ACCPM pseudo-monotone ke(p)k provably not given

(Algorithm 2) pseudo co-coercive gp pseudo-polynomial

conic ACCPM
monotone gd pseudo-polynomial

(Algorithm 4)

�
x
ed
p
oi
n
t Negishi

| kbe(�)k
heuristic,

(Algorithm 5) empirically linear

Homotopy
continuous

utility or globally

([100]) price deviation convergent
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is signi�cantly higher in the latter case.

After this comparison with approaches from the literature, the rest of the chapter
concentrates on a qualitative comparison of the Algorithms 2, 4 and 5 discussed
in this work. More details on the implementation and resulting numbers are
reported in Appendix E and F.

The empirical behavior of all three algorithms is strongly in
uenced by the stop-
ping criterion and the starting feasible set. The starting point is less important
but can have a minor in
uence in some cases. Let us comment the stopping
criterion �rst.

In Algorithm 2 we have chosen ke(p)k and not, say, jpTe(p)j, gp(p) or gd(p),
because the norm of the excess has a direct economic interpretation as opposed
to the other measures. Furthermore, e(�p) = e(p) for all � > 0 and so neither gp,
gd nor the complementarity product p

T e(p) have an absolute meaning, making the
interpretation of an "-solution di�cult. The choice of ke(p)k requires, however,
that e(p�) = 0 at equilibrium prices p�, a condition which is satis�ed by all our
test-problems.

In Algorithm 4 gd is usually not computable. Nevertheless, either gd can be
bounded by gp using monotonicity, or the norm of the excess ke(p)k is used
again. In the implementation of both Algorithm 2 and 4 we used simultaneously
ke(p)k and the number of iterations as stopping criterion.

In Algorithm 5 the notion e(p) is replaced by the budget excess vector be(�) which
appears in the space of agents. Hence, we stop if either kbe(�)k is su�ciently
small, or the number of iterations reaches a given bound.

Next, concerning the starting feasible set, the user can exploit his a priori knowl-
edge about the location of the equilibrium price by choosing a tight price-set. In
case of Algorithms 2 and 4 this is straightforward. In the Negishi-Algorithm this
knowledge can be used in the decomposition-machinery of Algorithm 6. Because
the time spent in the decomposition routine strongly dominates the overall com-
puting time, the restriction of the price-set in
uences directly the total running
time. One should be aware, however, that only in an equilibrium �� the solution
p� of the decomposition coincides (up to scaling) with the equilibrium price. Or
to put it the other way round: For � 6= �� a tight restriction of the feasible
price-set around the true equilibrium price may exclude the actual solution of
the decomposition. In case of our examples, though, we observed a remarkable
robustness in that the solution price of the decomposition was always very close
to the �nal equilibrium price, i.e. almost independent of the weight vector �.

The examples we tested numerically are described in some detail in Appendix F.
Basically we used di�erent variants of the energy-economy model MMmr, both
with respect to data and model-structure. Additionally, a set of simple agents
de�ned by non-linear optimization problems was investigated.

Based on these examples, let us state some general conclusions, cf. Appendix F.6.
Most importantly, Algorithm 2 and 5 including all variants always found the same
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solution. Speci�cally, the starting point had no noticeable in
uence on the �nal
iterate. In a few cases Algorithm 2 got stuck near the equilibrium solution, in
most cases, however, Algorithm 2 was surprisingly robust and reliable. Compared
to Algorithm 2 Algorithm 4 reduced ke(p)k quicker|in the �rst 30{40 iterations,
but then converged to a non-equilibrium price. This phenomenon is probably
due to non-monotonicity of e(p), but also the limited accuracy of computing the
analytic center or the excess can be responsible. In view of these experiences it can
be reasonable to combine Algorithm 4 in a �rst stage with Algorithm 2 in a second
stage. Furthermore, Algorithm 4 is dropped from the remaining discussion.

Concerning Algorithm 5 we observed empirically a linear convergence of kbek
as a consequence of a contractive �xed point map. This interesting result de-
serves future attention. Usually 5{6 Negishi-iterations are su�cient to obtain a
good solution from an arbitrary starting point. Only the limited accuracy in the
decomposition routine limits the attainable quality of solution.

The choice of the feasible set in
uences strongly the CPU-time of the algorithms,
aggravating thereby a comparison of Algorithm 2 and 5. Moreover, a sound rec-
ommendation on which algorithm to use should rely on a complexity-analysis,
which|in view of the structural de�ciencies of e(p)|seems di�cult. Neverthe-
less, based on the discussion in Chapter 3 and 4 and empirical �ndings in our
test problems the following considerations can be of interest.

To begin with let us assume that the number of Negishi-iterations in Algorithm 5
depends only `little' on the number of agents. Then the computational burden
of Algorithm 5 is essentially determined by the decomposition subroutine which
has a pseudo-polynomial complexity bound. Looking at Algorithm 2 using an-
alytic centers the situation seems ambivalent: on the one hand we can not give
a (pseudo-)polynomial complexity bound, on the other it outperformed Algo-
rithm 5 by a factor of 2{4 on our test-problems. The test-problems included 3
agents and 6{16 goods. In the sequel we try to raise evidence why Algorithm 2
might stay superior when jGj, the number of goods, increases.
Let us assume that Dk, the feasible set in iteration k of Algorithm 2, stays
su�ciently fat, i.e. the ratio of the largest inscribed sphere over the smallest
circumscribed sphere stays su�ciently far away from 0. Moreover, based on
our test-problems we assume an average volume reduction of 50% per iteration
and introduce some appropriate constants c, c0 and c00. Therefore vol(Dk) �
vol(D0)2�k � c[�(Dk)]d; where �(Dk) denotes the diameter of Dk, and hence
�(Dk) � c02�k=d. If we assume e(p) is Lipschitzian continuous with constant L
we can further deduce ke(p�)�e(pk)k / Lkp��pkk / c00L2�k=d: Finally, with the
stopping criterion ke(p�) � e(pk)k � " we �nd a polynomial complexity bound
k � p(log 1

"
; : : : ). In such an ideal situation Algorithm 2 clearly outperforms

Algorithm 5 which has a pseudo-polynomial complexity bound only. In case of
our test-problems the superiority of Algorithm 2 over Algorithm 5 might therefore
be even accentuated when jGj increases.



Chapter 6

Schliesslich wird sein Augenlicht schwach, und er weiss
nicht, ob es ihm dunkler wird, oder ob ihn nur seine
Augen täuschen. Wohl aber erkennt er jetzt im Dunkel
einen Glanz, der unverlöschlich aus der Türe der Geset-
zes bricht. Nun lebt er nicht mehr lange. F. K. [58]

Economic Aspects of CO2

Permits

In the last 20 years the scienti�c valuation of greenhouse gas (GHG)-induced
temperature rise has become quite uniform: a doubling of the CO2 concentration
in the atmosphere by 2050 will rise the global mean temperature by about 20C,
and thereby is predicted to cause damage in the range of one to a few percent
of GDP for developed countries, and several times more for developing countries
(see IPCC [54]). Estimates of the marginal damage of CO2 emission range be-
tween US$1990 5 and US$1990 125 per ton of carbon emitted now, where US$1990
denotes US dollars in 1990. As an example, recent estimations of damage costs
for Switzerland (see Meier [78]) predict about US$1997 2 � 109 or almost 1% of
GDP; major e�ects are expected in tourism and direct weather induced damage
like 
oods.

The wide acceptance of this standpoint in the international scienti�c community
is rather new. The discussion can be traced back more than 200 years; but only
since the publication of Arrhenius [1] in 1896 the role of CO2 became prominent.
Until about 50 years ago most authors acknowledged positively the potential
warming. For example, the title of a booklet from 1919 promises \Es winken Pal-
menhaine von Berlin bis Stuttgart" (Palm groves wave from Berlin to Stuttgart),
and Callendar [11] postulates with respect to climate e�ects \the consumption of
fossil fuels will probably prove useful for humanity".

Although there are indeed positive e�ects for an increased global mean temper-
ature, scientists today are more aware of potential damage caused by 
oods,
storms, global destabilization of ecosystems, rising sea level, and loss of human
life, as well as shifting climate belts which bring about droughts in fertile areas
and increased precipitation on waste land. Despite the detailed knowledge of
potential damage based on climate scenarios, there is still a large uncertainty on
what the real local climate will actually be all over the world.

Thus, the economic estimation of damage costs is di�cult, explaining partly
why the focus of many economists lies more on the other side of the coin, the
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estimation of CO2 abatement costs, which is more tractable. This focus, however,
may introduce bias into the damage/abatement equation. A discussion of the
present estimation of abatement costs based on energy-economy models can be
found in Ekins [26] and is summarized in Section 6.2.

Besides the critical discussion of existing literature, a main contribution of this
chapter include the section `Initial distribution of permits', where the burden im-
posed by CO2 abatement is compared between developing and developed coun-
tries, which, as we will see, can be understood as sharing the burden between
sellers and buyers of permits.

6.1 Emission Permits

In order to understand the meaning of emission permits consider a group of
countries which agree on the maximal amount of combined emissions for a given
future period t. This combined amount is distributed among the countries as the
initial endowment of permits. Then, at the end of period t, the actual amount
of CO2 emission, cumulated over t, must be equal to or less than the amount
of permits it owns. If the initial endowment exceeds actual CO2 emission the
country can sell the excess permits to other countries, while in the opposite case
the country must buy the necessary amount of permits from other countries.

Emission permits have attained a high degree of respect not only in environmen-
tal economy, but also in politics, where the US-administration|not necessarily
known for an active strategy for CO2 abatement|recently acknowledged CO2

emission permits as a tool against climate change (see Cushman [15]). Reasons
for this situation are a number of advantages of permits over alternative instru-
ments like taxes or regulative laws. Speci�cally, permits are claimed to have a
high ecological aptness, high economic e�ciency1, constitute a dynamic incen-
tive for development and implementation of improved technologies (see Schubert
[96]), and can be implemented with little administrative cost. In contrast to
these advantages of permits �nancial instruments like taxes have only an indirect
e�ect on the amount of emission and, furthermore, are in practice usually di�er-
ing between the countries and therefore economically ine�cient. Country-wise
regulative laws can directly control the amount, but are not only often tedious to
implement, but su�er in general from di�erent marginal costs of abatement and
are consequently also not e�cient economically.

1A state is economic e�cient if it can not be obtained with less cost. In our situation this
is characterized by equal marginal cost of CO2 abatement throughout all countries. To see
this assume two countries with marginal costs �1 < �2 and de�ne � := �2 � �1 > 0. Then a
pro�t of � can be realized by allowing region 2 to emit one unit more (costs: ��2), and at the
same time by reducing the emissions of region 1 by one unit (costs: +�1). Assuming a liberal
market economy where world market prices coincide with domestic prices, emission permits
imply equal marginal abatement cost in all countries considered.
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Nevertheless, CO2 emission permits also have their shortcomings and give rise
to a number of questions which are commented below: (i) what is the level of
`optimal' CO2 concentration in the atmosphere, (ii) how shall they be distributed
initially, (iii) how are the permits implemented, (iv) under what conditions can
the potential advantage be realized, etcetera. In the recent polit-economic dis-
cussion the distributional e�ect and the level of `optimal' emissions are most
prominent.

`Optimal' Level of CO2 Emission

Often the notion `optimal' is interpreted only economically, designating a state
of maximal net pro�t or welfare, whereas other branches of science may interpret
it di�erently. Hence opinions about the optimal level of CO2 concentration in
the atmosphere are very di�erent, ranging from todays level up to an arbitrarily
high level.

Physicists and other natural scientists, being aware of the high non-linearity and
uncertainty in the reaction of global climate on a rise of CO2 concentration,
tend to hold the former, conservative position. Indeed, IPCC [54] highlights
that \There are many uncertainties and many factors currently limit our abil-
ity to project and detect future climate change. Future unexpected, large and
rapid climate system changes (as have occurred in the past) are, by their nature,
di�cult to predict. This implies that future climate changes may also involve
`surprises'. In particular, these arise from the nonlinear nature of the climate
system. When rapidly forced, nonlinear systems are especially subject to unex-
pected behavior." As an example of such recent `surprises' GRIP [43] indicates
that abrupt temperature changes with a magnitude of 6{140C within only 30{60
years happened in Greenland. Such a change is de�nitely out of imagination and
beyond the results of larger international models which are usually `tuned' to
show a `reasonable' behavior, i.e. what modelers expect.

The latter position|no reduction of CO2 emission|is closer to some economists
standpoint being aware of the uncertainty in the estimation of the damage costs
on the one hand, and tending to expect very high abatement costs on the other
hand. If additionally a high discount rate (say > 5% p.a.) is assumed it becomes
prohibitively expensive to invest today in CO2 abatement, if its `return', the
avoidance of damage, happens considerably later in time. A more thorough
discussion on how abatement costs are estimated by todays models can be found
in Ekins [26] and will be taken up in Section 6.2.

Initial Distribution of Permits

The initial endowment with permits is intimately related to the global distribu-
tional e�ect of CO2 abatement, which is of decisive importance for the political
survival of this concept. Because decision makers want to know the consequences
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of positions beforehand in order to negotiate optimally, the crucial role of good
studies which possibly rely on the kind of models presented in this work is obvi-
ous. If information about the consequences for all the participating countries is
openly available, rational negotiation is strengthened.

Major open questions concern the participation of lower developed countries
(LDC) and the endowment with permits over time among LDC and DC (devel-
oped countries). Facing future demographic and economic trends and potential
leakage e�ects, it is compulsory on the long run to integrate all major emitters in
such a permit community to make it work e�ectively. Presently, typical simpli�ed
positions are the non-willingness of LDC to accept a reduction of their economic
development as a consequence of CO2 abatement, whereas DC tend to show to
some extend a willingness to pay. One possibility to overcome this problem is to
make the LDC pro�t through a su�ciently large initial endowment which then
can be sold on the permit market.

Assume a representative developed country
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(C)
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emissions

marginal cost
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Figure 6.1: Pro�ts from trade and distribu-
tional e�ects due to CO2 permits.

has a marginal CO2 abatement cost curve
cb(Em) as a function of the emission Em
and where the subscript `b' stands for buyer.
Similarly a developing country is assumed to
exhibit the characteristic cs(Em) (`seller'),
cf. Figure 6.1. Here the notion buyer and
seller generalize the notion DC and LDC re-
spectively. Assume further the initial endow-
ment is e0b and e

0
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is thus the direct net pro�t of CO2 abatement for the seller. Obviously, by shifting
initial endowment from the buyer to the seller, i.e. e0s  e0s+� and e0b  e0b ��,
the net pro�t for the seller increases, and can even become positive in some
situations, such as not too restrictive global emission bounds and a su�cient
decrease of marginal cost cs(Em) in the range [e�s; e

0
s].

Besides this `buying the seller' aspect, Figure 6.1 shows the pro�t for both the
buyer and the seller achieved by trading visavis obeying the single country emis-
sion bounds e0s and e

0
b respectively. In such a comparison `trade versus non-trade',
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both the buyer and the seller pro�t by the light gray shaded area (B) and (C)
respectively. The evaluation of such di�ering regional pro�ts could guide negoti-
ations for distributing the initial endowment. Besides such direct pro�ts, a major
indirect pro�t is to come from a reduction of the damage costs mentioned in the
introduction. Furthermore, it can be expected that a reduction of CO2 emission
causes also other indirect pro�ts called `secondary bene�ts': reduced emissions
of other pollutants, increased e�ciency of the overall economy, improved quality
due to increased process control, etcetera.

Aspects in the Implementation of Permits

Among the numerous aspects we like to comment on very few only. First some
of the di�erent possible time-structures of permits are discussed in Section 7.1.2.
Next, the context of international permits rises another level of complexity by
the question on how the local implementation happens, i.e. how the local agents
(single consumers or �rms) are taken into account. Possibilities comprise national
taxes on fossil fuels, a system of domestic permits taking up the international
permits, etcetera. As a non-regional possibility one can think of imposing a
permit scheme on the producers of fossil fuels, theoretically bypassing all political
obstacles. Or more regionally oriented, in case of crude oil the re�neries could
constitute the agents in the permit system.

Conditions for the Functioning of the Permit Market

Neglecting almost everything which can be found in the standard economic liter-
ature, we want to point to some speci�cities of MMmr. First note that the regions
behave myopically; they take the price signal as given and maximize their util-
ity. By contrast, regarded as a player in an jRj-person game, regions might
well choose a strategy where parts of the goods are held back and thereby the
prices in
uenced (cf. Gabszewicz and Vial [32]).2 Such oligopolistic strategies
are tempting above all for larger agents owning a signi�cant part of the total
permits and producing much of the (num�eraire) goods. Focusing on the market
of permits, it is likely that such a behavior can be detected by the other agents,
because reliable information about regional emissions are available from several
independent sources. It is then up to the interregional community to establish
clear rules in the beginning and consequently apply them accordingly.

2It is interesting that in one of the few existing real world implementations of emission
permits|sulphur rights in the US|such a behavior was indeed postulated based on empirical
�ndings (see Murphy, Sanders and Shaw [80]); but the explanation there did not assume a
direct pro�t-increasing strategic behavior of the agents via increased prices, instead a certain
conservative attitude was found where emitters were afraid of not having su�cient permits
when needed. This risk-averseness obstructs the functioning of the permit market especially in
the case of a small number of agents.
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Similarly, the case of hiding emissions by systematically falsifying regional statis-
tics or other cheating possibilities must be properly taken into account.

And �nally, as mentioned above, a market of emission permits should comprise
all major emitters, otherwise leakage e�ects can a�ect the whole economy, ruining
part of the economy of the permit-trading regions on the one hand, and missing
the global CO2 emission targets on the other (cf. Manne and Rutherford [75]). It
is unclear, however, to what extend such leakages could negatively a�ect regional
economies in reality. Not only a large part of emission activities is locally �xed
(heating/cooling, transportation, service sector, etcetera), but also in the indus-
trial production sector energy costs are normally making up only a small part of
the overall production costs. In the remaining cases like cement or heavy steel
and aluminum, a permit induced tax-regime can be imposed in case of imports,
and reversely permit induced costs can be paid back if such goods are exported.
Furthermore, it is even questionable if uncorrected leakages are harmful on the
long run for regions in the permit-community, because permits give anyway an
incentive for the economy to shift from industrial energy-intensive products to
higher level service-sector products.

The situation is comparable to countries being rich in resources vis-�a-vis countries
endowed with little natural resources. The former will tend to stay in a resource
depletion oriented structure bringing only modest wealth, whereas economies of
countries lacking such resources tend to increasingly develop value-added prod-
ucts and services, resulting �nally in wealthier economies. This may be accepted
as an empirical �nding, but moreover it can be an argument against model-results,
where typically the economic structure modeled is limited in anticipating such
long running sectoral shifts.

6.2 Energy Economy Models

An economically optimal behavior attempts to equate the marginal damage costs
of GHG emissions to the marginal cost of reducing them, and thereby prevents
damage. The estimation of both cost curves|regionally di�erentiated or glob-
ally aggregated|are subject to a wide margin of uncertainty. But whereas an
estimation of mitigation costs is calculated within the human economic system
and is therefore more open to an economic analysis, the factors determining dam-
age costs are beyond human control, and therefore aggravate signi�cantly their
analysis. This might explain why so much research concentrates on mitigation
costs while only little e�ort is put into the estimation of damage costs. As a
consequence of the uncertainty involved in estimating mitigation costs, a number
of papers appeared in the last 10 years comparing and analyzing di�erent models
(see [26, 17, 34]). Not surprisingly, the assumptions on which the models are
constructed have a decisive in
uence on the outcomes.

To start with, the base line scenario assumptions like rate of economic growth,
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levels of discount rate or demographic trends greatly a�ect the resulting abate-
ment costs. Other in
uential assumptions include the value of land, the value of
human life, agricultural losses, macroeconomic assumptions like substitution pa-
rameters, technological assumptions like backstop technologies or the aeei3 factor,
use of unemployed resources, revenue recycling of potential carbon taxes, existing
distortions in the tax regime, how carbon taxes are set up (`double dividend'4),
and considerations stemming from secondary bene�ts.

Surprisingly enough, most models show multiple severe shortcomings in these re-
spects. For example, Pearce [92, Note 6 p. 940] expresses surprise \that most of
the simulations of hypothetical carbon taxes do not consider revenue neutrality."
Nordhaus [90, p. 317] states, \The importance of revenue recycling is surpris-
ing and striking. These �ndings emphasize the critical nature of designing the
instruments and use of revenues in a careful manner. The tail of revenue recy-
cling would seem to wag the dog of climate change policy." Finally, Gaskins and
Weyant [34, p. 320] con�rm the importance of revenue recycling: \Simulations
with four models of the US economy indicate that from 35% to more than 100%
of the GDP losses could ultimately be o�set by recycling revenues through cuts
in existing taxes". Concerning MMmr, it has no explicit carbon tax, but the re-
sulting equilibrium can equally be interpreted as a result of a tax regime with
neutral revenue recycling.

Another in
uential parameter is the aeei factor; while the values in the models
range from 0{1%, Dean and Hoeller [17] in their comparative study of the six
main global models note: \A di�erence of 0.5% in this parameter, given com-
pounding, can lead to an outcome in 2100 which is as much as 20 billion tons
of carbon emissions di�erent." Ekins [26] comments that \di�erences in base-
line emissions of this magnitude would greatly a�ect the cost of reducing these
emissions to any particular level."

Finally, concerning secondary bene�ts, Ekins [26, p. 261] reports that its impor-
tance in a bene�t cost analysis has been recognized by many analysts of global
warming, and continues: \This makes it the more surprising that neither of the
two main cost-bene�t analysis of global warming to appear to date make any at-
tempt to incorporate into their assessment, even tentatively, the various estimates
of secondary bene�ts that have so far been made."

Ekins [26, p. 271] concludes that \implementing a carbon tax sensitively with re-
gard to issues such as these could partially or totally o�set the negative economic
e�ects deriving from increasing the price of energy." As important conditions
he identi�es on the one hand the gradual imposition, and on the other hand the
likewise reduction of other taxes to keep the �scal package invariant.

3Autonomous energy e�ciency improvement; it describes the price-independent technologi-
cal increase of energy e�ciency over time, i.e. the increase of output over energy input.

4Double dividend designates the double gain from internalizing the externalities due to free
CO2 emissions on the one hand, and the gain from a reduction of distortions in the existing
tax system due to the introduction of a carbon tax with a concurrent reduction of distortional
taxes on the other hand.
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Chapter 7

Vor seinem Tode sammeln sich in seinem Kopfe alle Er-
fahrungen der ganzen Zeit zu einer Frage, die er bisher
an den Türhüter noch nicht gestellt hat. Er winkt ihm zu,
da er seinen erstarrenden Körper nicht mehr aufrichten
kann. Der Türhüter muss sich tief zu ihm hinunterneigen,
denn der Grössenunterschied hat sich sehr zuungunsten
des Mannes verändert. F. K. [58]

Modeling Trade of CO2 Permits:
The Model Markal-Macro
Multi-Region MMmr

When 1973 the oil crisis shook the economy of almost the whole world, the energy
market attracted the attention from many researchers. In the following years
two institutions started to build large energy models: IIASA1 and IEA2. In 1974
H�afele and Manne built a �rst model for IIASA, from which 1974 ETA{Macro [72]
and 1981 `the' IIASA{model [45] were derived. IEA on the other hand initiated
Markal with its variations (see below) and the IEA{ORAU model [24, 25]. A
third important contribution came from Nordhaus (Yale{University), who built
in the late 70's a linear energy{optimizing model [88, 89]. From ETA{Macro
Manne derived Markal{Macro, Global2100 and 12RT3.

Markal and Markal-Macro are insofar outstanding, in that they are based from
the beginning on an international collaboration. As a consequence, Markal and
Markal-Macro are implemented and used in more than two dozen countries all
over the world. This results in a reliable and well tested model code, data avail-
ability for many di�erent countries, and ongoing discussions and improvements
of the models. A survey on both Markal and Markal-Macro can be found in
Appendix C.

The chapter is organized as follows. Section 7.1 presents the extensions needed
for interregional trade of CO2 permits. Here di�erent modeling approaches for
permits are discussed and formally analyzed, and the role of the num�eraire price
is investigated. Section 7.1 is written from an economical standpoint focusing on
a single region. In Section 7.2 this single region view is broadened to encompass
the equilibrium problem posed by the set of all regions; two formulations are

1International Institute for Applied System Analysis
2International Energy Agency
312 region trade: this model deals especially with world trade and its e�ects on CO2 strate-

gies.
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given: �rst the VIP-formulation (VIP) from page 7 and second the �xed point
problem due to Negishi discussed in Section 2.2.

Contributions comprise the whole chapter.

7.1 MMmr: AMulti-Regional Version of Markal-

Macro Including Trade of CO2-Permits

Each regional Markal-Macro model can be understood as partial equilibrium
model in the energy sector, and the result represents a regional equilibrium,
cf. Appendix C. Here we want to extend the regional models by coupling them in
an interregional (international if the regions coincide with nations) model where
in principle an arbitrary set of goods can be traded on a common market, see Fig-
ure 7.1. In the concrete present formulation, however, only two goods are traded
in each time period (i.e. due to the dynamic nature of MM there are in fact 2jT j
goods, with T the set of time periods). On the one hand we have CO2 emission
permits, often simply called permits, and on the other hand the aggregated good
Yt which is the num�eraire and closes trade. A region in the resulting equilibrium
model MMmr equals the `utility maximizing agent' (1.6).
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Figure 7.1: The multiregional Markal-Macro MMmr.

7.1.1 Changes in the Model

In the multiregional framework every quantity needs an additional regional index
r, which is, however, dropped in case of coe�cients for the sake of notational
convenience. Based on the notation from Appendix C, the following will be used
in the sequel:

T set of periods (time horizon);
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R set of regions;
Ur utility of region r;
Cr;t consumption of region r in period t;
Yr;t production of region r in period t;
Ir;t investment of region r in period t;
EC r;t energy cost of region r in period t;
Kr;t capital of region r in period t;
Lr;t labour of region r in period t;
Dr;t demand of (aggregate of) energy services : : : ;
IECO2 r 2 IRjT j initial endowments of CO2 permits of region r;
NTXCO2 r 2 IRjT j net export (exports minus imports) of permits of region r;
NTX r 2 IRjT j net export of Yr of region r;

pCO2 2 IRjT j
+ price of CO2 permits;

pNTX 2 IRjT j
+ price of Yr;

e 2 IR2jT j excess = (
P

r NTX r;
P

r NTXCO2 r).

The changes of the original Macro-model comprise the following constraints which
are distinguishable from the original MM-constraints by the superscript mr (multi
regional). First, the use of production is corrected by the net trade,4

Yr;t = Cr;t + Ir;t + EC r;t + NTX r;t: (USEmr
r;t )

Second, the CO2 emissions allowed are restricted by the initial endowment minus
the net selling of permits,

Emr;t � IECO2 r;t � NTXCO2 r;t: (ECmr
r;t )

Finally, the overall budget (trade balance) must have no de�cit:

0 � pTNTXNTX r + pTCO2NTXCO2 r: (BCmr
r )

All other Markal-Macro constraints in (C.5) are left unchanged except for the
addition of a regional index r. In view of (1.6) and (C.5) the resulting regional
problems of MMmr can be written as follows:

max Ur(Cr)

s.t. (C:1){(C:4); (PRDr;t); (Lr;t+1); (CAPr;t+1); (TCr);

(USEmr
r;t ); (EC

mr
r;t ); (BC

mr
r );

(all other Markal-Macro constraints):

9>>>>=
>>>>;

(7.1)

4As for notation we use the gams-related convention that an equation has to be repeated
for each meaningful occurrence of indices which are given in the tag. As an example the tag
(USEmr

r;t ) indicates that the corresponding equation is repeated for all t 2 T and r 2 R.
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Important economic results of the models are the GDP (gross domestic product)
and the GNP (gross national product). Based on the original MM-de�nition of
production (PRDr;t) we have for the stand-alone MM-model

GDPt := Ct + It = Yt � EC t:

Because the view of Macro on the energy sector does not distinguish between
the value added and the cost of inputs, the interpretation of the GDP requires
extra caution. One of the possibilities is to treat the total cost EC t as input cost,
and interpret the part

P
d bd D

�
r;d;t in the production function related to energy

services as total output.

In the multiregional setting of MMmr the GDP takes also foreign trade into ac-
count and is de�ned by

GDPmr
r;t := Cr;t + Ir;t + NTX r;t = Yr;t � EC r;t:

If the capital-exchange is further taken into account we arrive at the GNP:

GNPmr
r;t := GDPmr

r;t +
pCO2 ;t
pNTX ;t

NTXCO2 r;t = Yr;t � EC r;t +
pCO2 ;t
pNTX ;t

NTXCO2 r;t:

In all these relations Yr;t is de�ned by the CES-production function in (PRDt)
page 117, extended by a regional index r. Some authors prefer to call this speci�c
GNP `green national product' because the capital-
ow is based on `arti�cial'
rights at the nature and not on `proper' goods, labor or services.

Notational Generalization

The extensions presented above are speci�c for trade of CO2 permits. It is ob-
vious, however, that MMmr can be generalized to model trade of a larger set of
goods. Assume G = f0; 1; : : : ; jGj � 1g is the index set of traded goods without
subdivision by periods, and with the convention that the index 0 represents the
num�eraire good. In our case good 0 is NTX and good 1 represents the CO2

permits. Denote by x0g;r;t the initial endowment of good g in region r and period
t, and by xg;r;t the corresponding excess (`export minus import' in the context of
geographical units). The formulation of our previous model MMmr can then be
expressed by x00;r;t = 0,

Yr;t = Cr;t + Ir;t + EC r;t + x0;r;t: (USEmr
r;t )

Emr;t � x01;r;t � x1;r;t; (ECmr
r;t )

and
0 �

X
g2G

pTg xg;r: (BCmr
r )

To incorporate more traded goods requires simply to explicit the excess based on
the corresponding constraints in the underlying model and to extend the set of
goods in the budget constraint.
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7.1.2 Discussion of Some Aspects of MMmr

The Num�eraire-Price and the Budget Constraint

Note that the price vector can be scaled by any positive scalar without a�ecting
the primal solution of any MM-based agent. (The dual multiplier of the budget
constraint, however, is linearly in
uenced by such a scaling.) A single value
of a price component pg;t is therefore without information; here the function of
the num�eraire comes in which is de�ned as a good representing the monetary
unit of an economy. That is, the price of the num�eraire good x0;r;t in the local
currency of region r is known (�xed exogenously), and usually taken to be one,
which can always be achieved by adjusting the unit-amount. Based on that the
`real' prices of the goods are pg;t

p0;t
for all g 6= 0 and all t. In case of MM all

prices are undiscounted and therefore the fraction pg;t
p0;t

is also undiscounted. How

discounting of equilibrium prices should be done will be discussed below. But �rst
the economic interpretation of the budget constraint deserves some clari�cation.
Because the discussion focuses on one region, the index r will be suppressed.
Consider in a �rst step a `per period' budget constraint of the form

p0;tx0;t + p1;tx1;t � 0 8t 2 T ;

in the model-related undiscounted `real' prices it can equivalently be written as

x0;t +
p1;t
p0;t

x1;t � 0 8t 2 T:

In our case, though, we have chosen a scalar budget constraint which balances the
monetary exchange over all time periods. An economically consistent approach
to derive this takes the budget excess of each time period, multiplies it by an
appropriate discount factor at, and balances it over the whole time horizon:

X
t2T

at

�
x0;t +

p1;t
p0;t

x1;t

�
� 0: (7.2)

It is proven in the next lemma that we regain our model formulationX
t2T

(p0;tx0;t + p1;tx1;t) � 0 (7.3)

if and only if at = �p0;t 8t 2 T and some � > 0.

Lemma 7.1 There exists � > 0 such that at = �p0;t 8t 2 T if and only if(
x :

X
t2T

at
�
x0;t +

p1;t
p0;t
x1;t
�
� 0

)
=

(
x :

X
t2T

p0;tx0;t + p1;tx1;t � 0

)
:
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The sets|a halfspace whose de�ning hyperplane contains the origin|are equal
if and only if the corresponding normal vectors

n1 :=
�
a1; : : : ; aT ;

a1
p0;1

p1;1; : : : ;
aT
p0;T

p1;T
�

and

n2 := (p0;1; : : : ; p0;T ; p1;1; : : : ; p1;T )

di�er by a positive scalar only. We then have from the �rst half of the vector
equality n1 = �n2 the relation

at = �p0;t 8t 2 T;
and in the second half at

p0;t
p1;t = �p1;t, which, by the previous relation at = �p0;t,

gives the trivial identity �p1;t = �p1;t, and so we have veri�ed n1 = �n2.

Economically interpreted the (endogenously determined) price for the num�eraire
p0 is exactly proportional to the discount factor at in the budget constraint (7.2),
that is, we have

at
at+1

=
p0;t
p0;t+1

t 2 f1; : : : ; T � 1g:
Hence the equilibrium discount factor is given by at = p0;t=p0;1 and equals the
sum of in
ation plus net (real) return on capital. As for MM there is no in
ation.
Note that the discount factor of the traded goods cannot be obtained by infor-
mation contained in the agents; this knowledge can only be extracted from the
equilibrium solution. It seems therefore reasonable to give always the discounted
equilibrium prices, otherwise decision-makers might be tempted to erroneously
take the discount rate of their regional agent.

The Num�eraire-Price and the Regional Utility Discount Factor

Here the equilibrium discount rate represented by the num�eraire price p0 is put
into correspondence with the utility discount factor bt in the MM objective (C.1).
A simpli�ed MM-model re
ecting the direct in
uence of the budget constraint
on the objective caused by trade of the num�eraire x0 is

max
X
�2T

b� log(C� � x0;� )

s.t.
X
�2T

p0;�x0;� +
X
�2T

p1;�x1;� � 0:

Obviously we can assume equality in the budget constraint. From economic
theory it follows that arbitrage over time is zero in all equilibrium solutions, or
formally interpreted that the dual multiplier of the budget constraint in

max bt log(Ct � x0;t)
s.t.

X
�2T

(p0;�x0;� + p1;�x1;� ) = 0

9=
; (7.4)
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is the same for all t 2 T . Note that the maximization is done only with respect
to one time period t. For this model the Lagrangian is

L(x0;t; �t) = bt log(Ct � x0;t) + �t
X
�2T

(p0;�x0;� + p1;�x1;� );

and we derive from the �rst order optimality conditions @L=@x0;t = 0 the relation

�t =
bt

p0;t(Ct � x0;t) : (7.5)

From the arbitrage argument we expect to �nd in an equilibrium solution �t =
�t+1 8t 2 f1; : : : ; T � 1g. The relation (7.5) is based on an extremely simpli-
�ed model but numerical tests in equilibrium points of the full-
edged MMmr

con�rmed constant Lagrange multipliers following (7.5) with a high accuracy of
8{10 digits (based on the solver gams-minos). The reason for this coincidence lies
in the fact that our simpli�ed model comprises all occurrences of the num�eraire.
Therefore we have found the proportionality of the components of the num�eraire
price to be

p0;t+1

p0;t
=
bt+1

bt
� (Ct � x0;t)
(Ct+1 � x0;t+1)

; (7.6)

that is, the fraction
Ct � x0;t

Ct+1 � x0;t+1

appears additionally in the transmission of the utility discount factor b onto the
equilibrium discount factor p0.

Free Permits

In the presentation of Section 7.1.1 it was assumed that permits are valid only in
one period. This comes probably close to todays usual political intention, but it
is straightforward to model permits which are free to be used in any period. The
idea is to allow an arbitrary exchange of permits in all periods, and to require a
balanced `CO2-budget' only at the end of the time horizon. As a consequence,
such a free world allows to emit CO2 prior to buying the corresponding permits.

5

To capture this free behavior the emission constraint (ECmr
r;t ) in the model MMmr

is replaced by X
t2T

Emr;t �
X
t2T

[IECO2 r;t � NTXCO2 r;t] : (ECfree
r )

5This might irritate, but one can interpret such free permits in that there is no periodic
structure in the permits at all; the whole amount of permits for the whole time horizon is
simply given at the beginning, and the regions are free to use them in whatever way they like.
This supports actors who like to do the whole job of emission abatement towards the end of
the time horizon.



80 Markal-Macro multi-region MMmr

In view of the previous section, it is straightforward to expect a formal depen-
dency among the permit prices if the emission constraint is scalar; this helps both
to check economic consistency of the results, and to reduce the problem dimen-
sion. The starting presumption is the same `no-arbitrage'-argument as in the
previous section; the dual multiplier (shadow price) of (ECfree

r ) must be constant
over all time periods. Technically this means that if a solution is given, choose
t 2 T , freeze all variables for t0 6= t, and compute the dual multiplier �t of (EC

free
r ).

Then all such-wise computed multipliers must be equal, i.e. �t = �t0 must hold
for all t0 6= t. Economically seen constant �t means that the marginal utility of
permits is constant over time, that is, arbitrage possibilities are excluded. To
analyze the situation problem (7.4) is extended to

max bt log(Ct � x0;t)
s.t.

X
�2T

(p0;�x0;� + p1;�x1;� ) = 0;

X
�2T

(x01;� � x1;� ) =
X
�2T

Em� :

Fixing the emissions
P

� Em� =: c, the following Lagrangian is obtained:

L(x0;t; x1;t; �t; �t) = bt log(Ct � x0;t)
+ �t

X
�2T

(p0;�x0;� + p1;�x1;� ) + �t

hX
�2T

(x01;� � x1;� )� c
i
;

resolving for �t we derive from the �rst order optimality conditions @L=@x1;t = 0
the relation �t = �tp1;t: The no-arbitrage argument requires that both �t and �t
are constant over time, thus p1;t must also be constant over time, and so the
dimensionality of independent price components is reduced by jT j � 1. Note
that the `real' (undiscounted) permit prices p1;t=p0;t are then proportional to the
equilibrium discount rate 1=p0;t, which equals the situation of natural resources
analyzed by Hotelling [52].

The constant price components for p1 give raise to non-unique solutions due to
redundant variables. To see this, �rst note that x1 appears only in the budget
constraint and the (scalar) emission constraint (ECfree

r ); in both constraints x1
shows up only as a whole sum

P
t2T x1;t, and therefore the feasible set and the

objective does not change if for two distinct time periods t; t0 2 T we perturb
x1;t + � and x1;t0 � � for any � 2 IR. This ambiguity aggravates the solution
behavior of both the ACCPM and the regional models. In case of ACCPM this
is caused by almost arbitrarily large and `jumpy' excesses occuring throughout the
iterations which disturb to focus the solution; furthermore, these large excesses
can happen arbitrarily close to a solution and even in the solution itself, because
in an equilibrium only p1;t �

P
�2T x1;� = 0 holds for an arbitrary t 2 T , and

so the components x1;� can still be large. The regional models are negatively
a�ected in that solving the models using restart techniques is slowed down due
to possible bigger distances between successive solutions. All these problems
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can be overcome and the solution made unique by restricting trade to a single
period, say the last one, which is achieved by �xing all permit trade except for
the last period to zero, x1;t � 0 8t < jT j. This unique solution is obviously also
a (maximal) solution of the regional problem where x1 is not restricted such-like.
Furthermore, this strategy allows to reduce the size of the equilibrium problem
by jT j � 1. Of course, instead of �xing all but the last component to zero, and to
make the numbers `nicer', one could as well distribute the trade equally among
all periods by imposing x1;t = x1;t0 for all t and t

0 in T , or by simply redistributing
it after computing the equilibrium by setting x1;t :=

1
jT jx1;T 8t 2 T .

Floating Permits

The previous two concepts for trading permits|totally period dependent in the
original MMmr-model versus total freedom in the section above|are two extreme
cases. As an intermediate case we consider here so called 
oating permits; the
idea is to allow the use of unused permits in later periods, but|opposed to free
permits|it is not allowed to use permits from future periods. As in the case of
free permits two ways of exchanging permits are possible: exports/imports and
internal savings. While there was no need to explicitly model the internal saving
of permits in case of free permits, this must be done in case of 
oating permits,
because now savings from future periods are no more allowed to 
ow backwards,
i.e. credits are not allowed. To that end a new variable called SCO2 r;t (Savings
of CO2-permits) is introduced; it represents the change of the regional (internal)
stock of permits in period t. Thus, at the end of every period t the total amount
of permit savings is

Pt
�=1 SCO2 r;� which must be non-negative for all t 2 T :

tX
�=1

SCO2 r;� � 0: (SCO2r;t)

Based on these savings the emissions are bounded by the following set of jT j
constraints replacing (ECmr

r;t ) from above:

Emr;t � IECO2 r;t � NTXCO2 r;t � SCO2 r;t: (EC
oat
r;t )

Because permits are only allowed to move into future periods, the dual multipliers
of (EC
oat

r;t ) are non-increasing over time. As a consequence we observe

p1;1 � p1;2 � : : : � p1;T : (7.7)

Because MM is a growth model and the initial endowment with permits is linearly
decreasing over time we observe usually an overall scarcity of permits. Hence
p1;T > 0 and so p1 > 0.

The role of SCO2r;t in (EC

oat
r;t ) is close to that of a slack; a major di�erence is that

some of the components may be negative due to requiring only
Pt

�=1 SCO2 r;� � 0
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instead of SCO2r;t � 0 for each period t. By putting all positive slack appearing in
(EC
oat

r;t ) into SCO2r;t we can require equality in (EC
oat
r;t ). Substituting (EC
oat

r;t )
into (SCO2r;t) leads then to equivalence of the set of constraints described by
(SCO2r;t) and (EC
oat

r;t ) with

tX
�=1

Emr;� �
tX

�=1

[IECO2 r;� � NTXCO2 r;� ] : (EC
oat2
r;t )

Hence, in the real implementation the set of constraints (EC
oat2
r;t ) su�ces and it is

not necessary to introduce explicitly the savings SCO2 r;t with the corresponding
constraints (SCO2r;t).

In principle we have the same problem of non-uniqueness due to the introduction
of redundant variables as we had with free permits. To see this, note that if in a
period permits are at least as scarce as in the preceding period, the equilibrium
price of the corresponding components of p1 are equal. As discussed in case of
free permits in the previous section, trade is non-unique within a certain (sub-)set
of time periods T 0 � T if the corresponding price components of p1 are equal. By
imposing p1;t � p1;t+1+", t = 1; : : : ; jT j�1, with a su�ciently small " > 0, trade
x1;r becomes unique while still being arbitrarily close to an unperturbed solution
of the 
oating permit equilibrium problem.

In our scenarios we usually observe the same equilibrium solutions p using either
free or 
oating permits. To justify this note that a growing economy together with
a linear decrease of the endowment with CO2-permits leads to a situation where
permits are typically more scarce in period T than in all preceding periods. This
implies already p1;t = p1;t0 8 t; t0 2 T , and for all t < jT j the constraint (EC
oat2

r;t )
is non-binding and can be dropped. Therefore a practical way to solve MMmr

with 
oating permits is to solve it actually with free permits and then check the
resulting equilibrium price p if it is also an equilibrium price for 
oating permits.
This seemingly obscure way to solve the 
oating permit equilibrium problem is
actually of practical relevance, because ACCPM has severe problems solving it
directly. If, in a �rst attempt, (7.7) is not required, the same large and jumpy
excesses appear as discussed in case of free permits. If, in a second attempt,
(7.7) is obeyed, two undesirable e�ects are present: (i) non-unique solutions
and therefore again large and jumpy excesses (remember that in an equilibrium
solution we usually have p1;t = p1;t0 8 t; t0 2 T ); (ii) the restriction (7.7) for feasible
prices leads to poorly distributed excess vectors, eventually pushing the iterates
away from an interior solution point. Imposing in a third attempt p1;t � p1;t+1+"
8t = 1; : : : ; jT j � 1 resolves (i) but does not improve on (ii).

Consistency

Integrating consistent (regional) models which were developed independently
raises the question of consistency of the overall equilibriummodel. Trivial aspects
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cover equal units, more importantly are, however, the underlying model assump-
tions. In principle all regional models should make the same `global' assumptions,
whereas regional di�erentiation should still be possible. For example, it is reason-
able to require the same crude oil price on the world market for all regions, but it
is also meaningful to �nd di�erent growth rates of the population in the di�erent
regions. And here the discussion starts: how far should the model-assumptions
be equalized when integrating regional models? A relevant example in the case
of MMmr is the question of available technologies and the corresponding prices.
Should di�erent regional prices for photo-voltaic power generation be allowed,
even though there is an almost homogeneous world market for panels? Maybe
yes due to di�ering tax regimes or di�erent local construction costs, but one can
as well reject it as being inconsistent. Similar questions can be asked for al-
most all technologies. It is also questionable to what extend certain technologies
should be exclusive to certain regions. On the macroeconomic level more ques-
tions are added: are di�erent depreciation rates acceptable? What about growth
rates, elasticities, or the autonomous energy e�ciency improvement factor? As
well as it is obvious that consistent regional models can produce an inconsistent
overall model, it is also clear that there are in case of complex regional models
too many details involved to adjust all of them by a central authority. In case
of such complex regional models the only tractable way is to bring together the
local modelers and make them discuss directly there local assumptions. In fact,
ETSAP6, running now for more than 15 years, is exactly a forum where this
kind of adjustment has been done excessively. For this reason, and in view of
the above discussion, we accepted the regional models as is without any changes
except an adaption of units, cf. Appendix E.3. We are aware, however, that a
more thorough discussion is still lacking, and that this issue becomes increasingly
important once developing countries are integrated.

7.2 MMmr as VIP and Negishi-Problem

7.2.1 The VIP-Formulation

Based on (VIP) from page 7, MMmr can be written as a variational inequality

problem as follows. Let p = (pNTX ; pCO2 ) 2 IR
2jT j
+ , de�ne the regional excess

er(p) = (NTX r(p); NTXCO2 r(p)) 2 IR2jT j to be the outcome of the regional
utility maximization problem (7.1) at price signal p, and denote the aggregation
by e(p) :=

P
r2R er(p). Because e(p) = e(�p) for any � > 0, we can restrict the

set of feasible prices to � � IR
2jT j
+ , cf. (1.11), and formulate the concrete VIP for

MMmr as

�nd p� 2 � such that e(p�)T (p� p�) � 0; 8 p 2 �: (7.8)

6ETSAP abbreviates Energy Technology Systems Analysis Project which was founded by
the IEA, the International Energy Agency.
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Assuming non-redundant variables, the strict concave regional objective functions
imply a single valued e(p). Based on the map e(p), Algorithm 2 or Algorithm 4
can be applied, where in the latter case an initial transformation of the problem
together with a �nal transformation of the iterates is required.

7.2.2 The Negishi Problem

Here, De�nition 1.2 is the starting point; to relate MMmr to a welfare problem
denote by Kr the feasible set of region r 2 R de�ned by all constraints in (7.1) and
where the budget constraint (BCmr

r ) is omitted. By (Cr;NTX r;NTXCO2 r; : : : ) 2
Kr we then mean that the corresponding components ful�ll simultaneously all
constraints in (7.1) except the budget constraint. In view of the VIP-formulation
above, we de�ne again the regional excess er = (NTX r; NTXCO2 r) which is,
in the context of the Negishi welfare-problem, simply the compound of the two
vectors NTX r and NTXCO2 r and hence not price dependent. For any weight
vector � 2 IR

jRj
+ ,

P
r2R �r = 1, the welfare problem (`Negishi-welfare problem')

is then de�ned by

max
X
r2R

�rUr(Cr)

s.t.
X
r2R

er � 0;

(Cr;NTX r;NTXCO2 r; : : : ) 2 Kr 8r 2 R:

9>>>>>=
>>>>>;

(7.9)

Based thereupon Algorithm 5 can be applied, using a decomposition scheme like
the one described in Algorithm 6. To apply the latter we conclude this section
by expliciting (4.8) and (4.9), i.e. the interpretation of ��k, �r(p

k; vkr ) and er(v
k
r ) is

given in the context of MMmr.7 To start with, in iteration k the regional problem
de�ning max�r(p

k; vkr ) in (4.10) is

max �rUr(Cr) + pkNTX
TNTX r + pkCO2

TNTXCO2 r

s.t. (C:1){(C:4); (PRDr;t); (Lr;t+1); (CAPr;t+1); (TCr);

(USEmr
r;t ); (EC

mr
r;t );

(all other Markal-Macro constraints):

9>>>>=
>>>>;

(7.10)

Comparing (7.10) with (7.1) reveals two di�erences in the regional problem:
(BCmr

r ) is dropped and the objective is extended by the penalty-term pkT er =
pkNTX

TNTX r+p
k
CO2

TNTXCO2 r. Next, �
�
k is the sum of the objective values over

all such regional problems in iteration k. Finally, er(v
k
r ) = (NTX r; NTXCO2 r)

where NTX r and NTXCO2 r are taken from the solution of (7.10) in iteration k.

7Opposite to (4.8) and (4.9) the iteration-index is here a superscript again.



Chapter 8

“Was willst du denn jetzt noch wissen?” fragt der
Türhüter, “du bist unersättlich.” “Alle streben doch nach
dem Gesetz”, sagt der Mann, “wieso kommt es, dass in
den vielen Jahren niemand ausser mir Einlass verlangt
hat?” Der Türhüter erkennt, dass der Mann schon an
seinem Ende ist, und, um sein vergehendes Gehör noch
zu erreichen, brüllt er ihn an: “Hier konnte niemand sonst
Einlass erhalten, denn dieser Eingang war nur für dich
bestimmt. Ich gehe jetzt und schliesse ihn.” F. K. [58]

Economic Results of MMmr for
Three Countries

The regional MM models draw a sophisticated picture of the related energy sec-
tors and produce additionally a large amount of macro-economic data. A pre-
sentation and discussion of these results requires an in-depth knowledge of all
underlying regional models which is beyond the scope of this study. We therefore
restrict the presentation to results which are a direct outcome of the equilibrium
model MMmr, most notably equilibrium prices, dual multipliers of the CO2 emis-
sion constraints, the GNP and the amount of trade. All these economic results
are to be considered cautiously, as an in-depth discussion with economists of the
involved countries is not included. Nevertheless, the underlying regional data sets
are up to date (summer 1996 to spring 1997), and comprise the three countries
Sweden (SW), the Netherlands (NL) and Switzerland (CH).

Although this is de�nitely a very small equilibrium model, the results can rep-
resent the equilibrium of a larger group of countries; to see this, note that the
resulting trade can be interpreted in two ways. On the one hand the equilibrium
solution forces the overall excess to zero (given positive price components, which
is always the case in our scenarios), that is, trade among the three countries is
implicitly modeled as if it is closed, which is far away from reality. On the other
hand the only external information of a single region is the price signal given
exogenously. It makes no di�erence, therefore, from the perspective of a single
region if there are 3 or 30 regions included in the trade model, its (excess) reaction
is solely determined by the price signal.

If we assume that the three countries are representative of a larger part of Eu-
rope `E', in the sense that the resulting equilibrium prices of the three countries
correspond to the E trade model, then we can equally well interpret trade of the
three countries as trade within the larger E community. In view of the structural
variation of the three countries discussed below we claim that they might indeed
come near being representative in this equilibrium price sense, and hence their
results could|to some extend|be interpreted in such a sense. Speci�cally, trade
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of num�eraire could be seen in the context of such a larger virtual E community.

The Regional Models

The energy-related speci�cities of the three countries can be summarized as fol-
lows, cf. Bahn, B�ueler, Kypreos and Luethi [6]. The three countries have high
living standards. For instance, the 1993 gross domestic product (GDP) per capita
was (in thousand US$) 20.9 for the Netherlands, 24.7 for Sweden and 35.7 for
Switzerland, cf. [53]. However, both the structure and e�ciency of their en-
ergy systems are rather di�erent, particularly in the case of CO2 emission, see
Kram [66].

The Netherlands is a major exporter of natural gas, and its own energy system
relies heavily on gas. In 1993, 98% of all houses were connected to the natural
gas grid, and around 50% of electricity production came from gas power plants
and 40% from coal. Furthermore, fossil fuels accounted in 1990 for 97% of the
total primary energy use (TPE) resulting in CO2 emissions of 161.3 million tons,
that is 10.8 tons per capita.

In contrast in Switzerland, 60% of electricity production is hydro-generated and
38% nuclear. Under the current nuclear moratorium (valid until 2000), nuclear
capacity is not allowed to increase. Fossil fuels accounted in 1990 for 54% of the
TPE, but the use of coal is very low. In 1990, CO2 emissions from combustion
were 43 million tons or 6.4 tons emitted per capita. The main contributors of
CO2 were transportation and heating activities.

Sweden has large hydroelectric resources. Its electricity production is primarily
based on hydro-power (52%) and nuclear power (42%), the rest is produced from
fossil fuels. This situation is due to change, as the Swedish Parliament has decided
in 1980 to phase-out nuclear energy by the year 2010, starting in 1995. Fossil
fuels accounted in 1990 for only 34% of the TPE, resulting in CO2 emissions of
54 million tons, that is 6.3 tons emitted per capita.

These di�erences lead to signi�cant variations of CO2 abatement costs among
the three countries and for this reason constitute an incentive for cooperating on
CO2 emission abatement through an international market of emissions permits.

Parameter CH NL SW

pot. GDP growth rate [%] 1990 2000 2010 2020{40

0.57 1.97 1.75 1.2

2000 2010 2020 2030 2040

2.19 2 1.74 1.5 1.25
2

discount rate [%] 5 5 5

ESUB 0.2 0.25 0.4

US$/local currency 0.8333 0.6 0.15

Table 8.1: Economic parameters of the regions in MMmr.
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Both the Swiss and Swedish data cover initially the periods 1990{2030, whereas
the data representing the Netherlands are from spring 1997 and cover the periods
2000{2040. To extend trade, in the case of Switzerland and Sweden the data
from period 2030 were duplicated and adjusted, yielding data sets covering the
periods 1990{2040. In period 1990, Switzerland and Sweden behave as isolated
regions without CO2 emission bounds; this is achieved by forcing the num�eraire
exchange variable NTX 1990 = 0 together with setting the initial endowment of
CO2 permits to a su�ciently large constant, i.e. formally IECO2 1990 =1. A few
relevant economic parameters are presented in Table 8.1.

Emission Cases and Scenarios

There are basically �ve cases to consider, see Table 8.2: (A) the regional models
are isolated, i.e. are identical to the original formulation, without any trade; (B)
the countries trade only the aggregated product NTX but no emission permits;
and (C), the countries trade in addition CO2 emission permits NTXCO2 . Case
(A) and (B) can be further combined with CO2 emission limits which then have
to be ful�lled in each country. Case (B) is important as reference for the full trade
case (Cl), because trade by itself in
uences considerably the results and hence it
would be misleading to compare only case (A) and (C). The above abbreviations

No trade Trade of Trade of NTX

NTX only and NTXCO2

Unlimited emissions (Au) (Bu) |

Limited emissions (Al) (Bl) (Cl)

Table 8.2: Abbreviations used for the di�erent cases.

are extended in Table 8.2 and will be used in the rest of the chapter. In principle,
trade of permits can be further subdivided into `per period', `
oating' and `free'
permits following Section 7.1.2. For this chapter we have chosen `per period'
permits noting any exceptions.

Di�ering from the notion `case', we designate by `scenario' the CO2 reduction
target. The reference values are the approximate CO2 emission values in pe-
riod 1990 and set to 42 million tons for Switzerland, 62 for Sweden and 160 for
the Netherlands. Based on these reference emissions the reduction scenarios are
built; starting from the reference emissions in period 2000, the initial endowment
decreases linearly between 2000 and 2040 by the prescribed percentage. As an ex-
ample, the endowment in the �20%-scenario is given in Table 8.3. In the special
period 1990 the emissions of Switzerland and Sweden are unbounded. There are
three scenarios used in this study: Stabilization (i.e. 0%-scenario), the �20%-
and �40%-scenario. In the (Al) and (Bl) case the initial endowment with per-
mits is exactly the emission bounds of each country; only in case (Cl) permits
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are traded and consequently the realized regional emissions may di�er from the
endowment.

Country 2000 2010 2020 2030 2040

CH 42 39.9 37.8 35.7 33.6
SW 62 58.9 55.8 52.7 49.6
NL 160 152.0 144.0 136.0 128.0

Table 8.3: Initial endowment of CO2 permits for the �20%-scenario, in [Mtns/y]
CO2.

E�ects of Num�eraire Trade

As a �rst result Table 8.4 shows the unlimited emissions in the case (A) of isolated
countries and case (B) where only the num�eraire goods are traded. It is interesting
to see that regional emissions can increase non-monotonically (NL, 2010! 2020),
and that trade of num�eraire does not signi�cantly in
uence emissions but can
slightly increase or decrease them. This is remarkable in view of the signi�cant
increases of utility and GDP induced by trade presented in Table 8.5 below.
Finally, the aggregated emissions increase smoothly by about 60% from period
2000 to 2040.

Country Case 1990 2000 2010 2020 2030 2040

CH
(Au) 42.8 42.5 48.9 50.4 52.5 55.4
(Bu) 42.8 42.9 49.6 51.1 54.1 56.2

NL
(Au) | 162.9 176.0 175.9 176.0 194.2
(Bu) | 162.9 177.4 176.8 178.0 197.2

SW
(Au) 62.2 67.1 108.5 130.0 164.0 186.8
(Bu) 62.2 64.9 102.1 124.6 156.9 178.9X (Au) | 272.5 333.4 356.3 392.5 436.4
(Bu) | 270.7 329.1 352.5 389.0 432.3

Table 8.4: CO2 emissions (Mt/year) for the cases (Au) and (Bu).

While the utility-index|being the objective of the regional optimization problem|
is a scalar, results like GDP, consumption1, etcetera are period-dependent. The
presentation of such period-dependent results stemming from dynamic models
can be done in two ways; either the results are given for each period separately,
or they are aggregated. We have chosen to aggregate results in order to give

1For a de�nition of all economic terms see Chapter 7. `Consumption' denotes total macroe-
conomic consumption.
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a clearer overview. However, the choice of an appropriate discount rate is not
`canonical'. In order to emphasize the e�ects in the later periods, a small discount
rate of 2:5% p.a.|and not say 5%|is chosen, and based on this discount rate
the quantities are aggregated over the periods where trade takes place, i.e. 2000{
2040.

The last period 2040 poses a �nal problem; to damp terminal e�ects, the util-
ity discount factor of the last period is increased following a geometrical series,
see (C.1) page 117.2 This tends to make consumption in the last period higher
than in the other periods and so the weight attached to this last period in
uences
signi�cantly the aggregated outcome. But in our interpretation the results of the
last period are simply representatives of period 2040 and therefore discounted
back by 0:97540 � 0:363 to the base period 2000. This works �ne for Switzerland
and the Netherlands, but Sweden increases the utility discount factor of the last
period considerably more than the other regions, resulting in a signi�cant shift
of consumption into period 2040. For example, in case (Bu) Sweden increases its
consumption from US$ 3:3 � 1012 in 2030 to US$ 6:7 � 1012 in 2040. This e�ect
is not visible in the other two regions, explaining why only Sweden exhibits a
decrease in the aggregated consumption if trade is allowed, cf. Table 8.5.

CH NL SW
Measure (Au) (Bu) (Au) (Bu) (Au) (Bu)

Utility-index 2555.86 2559.66 3230.78 3236.89 5091.78 5157.34
GDP 12.16 12.41 18.48 18.63 10.69 10.43
Consumption 9.25 9.55 15.93 16.48 9.02 8.14

Table 8.5: Bene�t of trade without emission limits; GDP and consumption are
in [1012US$] with aggregation discount factor 2:5%.

If in the case of Sweden the internal utility discount factors are used in the ag-
gregation, then the consumption, which de�nes the objective function, increases
signi�cantly from US$ 20:70 � 1012 in the (Au)-case to US$ 26:67 � 1012 in the
(Bu)-case. Using this internal utility discount factor also for aggregating the
GDP, however, we observe a slight drop from US$ 24:68 � 1012 for (Au) down to
US$ 24:05 � 1012 for (Bu). Using Swedish data these numerical examples show
how the discount factor can shape the result of aggregation.

In the rest of this chapter we restrict ourselves to an aggregation discount factor of
2:5%. As a �rst main result Table 8.5 demonstrates nicely the expected `mutual
bene�t from trade' through the increase of the utility-index for all regions when

2A look at (C.1) reveals that for all but the last period T the utility discount factor `udft '
is the only discount factor attached to logCt. In the last period T , however, an additional
1=(1 � (1 � udrT )

10) factor accompanies udfT . For linguistic simplicity we denote in this
chapter the whole expression udf T

1
1�(1�udrT )10

as utility discount factor of the last period.
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trade is allowed.3 Surprisingly, having the greatest gain in the utility-index,
Sweden has also the only drop in aggregated consumption and GDP. But as
indicated by the word `index', the quantitative gain/loss in utility can not be
easily interpreted economically. Instead, measures like compensated or equivalent
variations are more appropriate for its interpretation.

Country 2000 2010 2020 2030 2040

CH �0:32821 �0:21302 �0:20958 �0:11786 0:9949
NL �0:48481 �0:49876 �0:30145 �0:29456 1:7142
SW 0:81302 0:71178 0:51103 0:41241 �2:7091

Table 8.6: (Bu); Undiscounted NTX trade without emission limits, in [1012US$].

The discussion above indicates another fundamental behavior of such dynamic
equilibrium models; the amount of trade|above all of the monetary num�eraire
good|tends to show a `bang-bang' behavior as seen in Table 8.6. For example,
in the case of Sweden, the very high utility discount factor attached to the last
period formes an incentive to export num�eraire in all prior periods but the last,
and then to import in the last period, when it counts most from the perspective
of the objective function, as much num�eraire as needed in order to satisfy the
budget constraint. Ginsburgh and Waelbroeck [36, Chapter 4], however, strongly
argue against the temptation to correct such `anomalous' outcomes by inserting
ad hoc constraints.

Another possibility would simply be to ignore the problematic last period in the
aggregation process. This, however, would compromise for example the Swedish
results where all imports would be left out. Also interesting is that the amount
of traded num�eraire|the aggregated monetary foreign trade|can exceed 20%
of GDP. This is, as indicated in the introduction, only plausible if trade is inter-
preted as happening within a larger group of countries.

Full Trade of Num�eraire and Permits

`Per Period' Permits

To start the presentation of the equilibrium results with one of its most interest-
ing facets, the undiscounted equilibrium prices resulting from case (Cl) together
with the corresponding marginal costs of isolated CO2 abatement from case (Bl)
are given in Figure 8.1. The large di�erence in the marginal abatement costs
constitute an incentive to join such a permit community and to trade certi�cats.

3To prevent misunderstandings the mutual bene�t from trade assures an improvement for
each region only if the non-trade-case (perfectly isolated regions) is compared with a case where
trade (of some goods) is possible. Speci�cally, economic theory does not predict a mutual
increase of utility if, starting from a situation where some goods are traded, additional goods
are traded. E.g., the utility-index of a region may drop when trade is extended from case (Bl)
to (Cl).
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Figure 8.1: Undiscounted marginal reduction costs and equilibrium permit prices.

Figure 8.1 shows in particular that the permit prices lie between the lowest and
highest national marginal reduction costs. As can be expected from the di�er-
ing structures in the energy sector, Switzerland and Sweden have sigini�cantly
higher marginal abatement costs than the Netherlands. If the marginal costs
and equilibrium prices are linearly extrapolated from the interval [+60%; 0%],
where +60% denotes a scenario without emission limits, we observe considerably
nonlinearly increased costs and prices in the �20% and �40% scenarios.

The above undiscounted equilibrium prices,
US$ 2000 per ton CO2
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Figure 8.2: Discounted equilibrium prices.

which exceed US$ 400 per ton CO2 in period
2040 for the �40%-scenario, seem to be high,
but discounting them back to the base period
2000 by means of the num�eraire price compo-
nent (cf. Section 7.1.2 page 77), show in fact
the opposite. Based on pNTX the anual equi-
librium discount factor is around 4:7%.

The discounted prices, depicted in Figure 8.2,
are very reasonable even for demanding sce-
narios like a reduction of 40% until 2040. To
give an example, a tax of US$ 60 per ton of CO2 measured in dollars from period
2000 equals approximately 13{14 US cents per liter of gasoline. Also interesting
is the bump in period 2010 which is possibly due to the inertia of the energy
sector. It takes time to implement cost e�ective alternatives, suggesting an early
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but comparably slow emission reduction instead of doing nothing now and leave
harder reduction targets for later time periods.

`Free' versus `Per Period' Permits

One possible strategy to investigate how permits are optimally distributed over
time is to leave the choice to the model, i.e. to look at the solution generated from
`free permits' (FP), cf. Section 7.1.2 page 79. Whereas in the previous section `per
period' (PP) permits were assumed, Figure 8.3 shows the CO2 emissions for both
the `per period' and the `free' permits for each country. The `free permit' curves
exhibit a characteristic raise at the end and are thereby easily distinguished from
the `per period' curves. The aggregated emissions are only shown for the `free
permit' option, because the aggregated `per period' emissions form a straight line
with a slope given by the reduction scenario. The aggrageted curves as well as all
regional curves show most clearly the optimal saving behavior: save permits in all
periods but the last, i.e. emit less, and use more permits in the last period. These
results underline the potential overall improvement achieved by early reduction of
emissions, instead of no reduction in early periods and severe reductions later. It
is still unclear, however, to what extend the shift of emissions into the last period
is in
uenced by the increased utility discount factor attached to period 2040.
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Figure 8.3: CO2 emissions in case of free or `per period' permits.

The utility-index for the individual regions, however, may decrease in the equi-
librium solution if permits are free to move in time. Mathematically this is not
surprising, because even though the jT j periodical emission constraints are re-
laxed by one overall constraint and thereby the regional feasibility sets enlarged,
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the equilibrium price may change, a�ecting the feasibility sets. Thus, by chang-
ing the equilibrium, some parts of the feasibility sets can expand, while others
can shrink. Table 8.7 shows the utility for the di�erent reduction scenarios in
case (Cl), where either the permits are restricted to periods (PP) or are free to
move among the periods (FP). In the �rst two reduction scenarios there are only
minor di�erences, showing a slight improvement of Switzerland and Sweden on
the one hand and a deterioration for the Netherlands on the other hand. The
�40%-scenario is more drastic in that only Sweden pro�ts from free permits,
whereas Switzerland and the Netherlands both lose utility-index.

CH NL SW
Scenario PP FP PP FP PP FP

0% 2559.365 2559.375 3237.232 3237.095 5151.147 5152.304
�20% 2558.984 2559.014 3236.769 3236.541 5147.358 5149.767
�40% 2559.058 2558.381 3239.869 3235.560 5143.758 5146.171

Table 8.7: Comparison of per period versus free permits expressed by utility-
index, case (Cl).

Finally the undiscounted equilibrium prices resulting from free permits are given
in Figure 8.4. In view of the `free permit' discussion in Section 7.1.2 one expects
an exponential increase over time. This exponential growth of prices over time
is con�rmed by the results in all but the last period. The drop in period 2040 is
again due to the higher weight given to period 2040 in the objective, which impels
the regions to shift emissions into that period, decreasing thereby the marginal
abatement costs, resulting �nally in a lower permit price.

As discussed in Section 7.1.2 the discounted
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Figure 8.4: Undiscounted free permit prices.

prices are constant over time, avoiding irreg-
ularities like the bump in Figure 8.2. But
the drop in period 2040 aggravates the esti-
mation of the discounted equilibrium prices
for the di�erent scenarios. As a �rst simple
strategy the undiscounted prices of period
2000 can be taken as the discounted prices.
But this is an overestimation due to the shift
of permits into the last period and the re-
sulting lower undiscounted prices in period
2040. An improved estimation can be obtained by discounting the prices back to
period 2000 and then building the weighted average, where the utility discount
factors are used as relative weight. An educated estimate of the discount fac-
tor is based on the num�eraire price components of the periods 2000{2030 and
yields approximately 4.7% per year. The weighted average then produces dis-
counted equilibrium prices in the range of 22.9, 36.9 and 58.4 US$ per ton CO2
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respectively for the three reduction scenarios.

These discounted equilibrium prices, based on free permits, seem to be compara-
ble with the prices of `per period' permits depicted in Figure 8.2.

`Per Period' Permits: Amount of Foreign Trade and GNP for Di�erent
Emission Scenarios

The in
uence of the di�erent reduction scenarios (0%, �20% and �40% CO2

emissions) on num�eraire trade are marginal only, i.e. Table 8.6 remains in priciple
valid for all scenarios. The same applys less strictly to trade of permits, as can
be seen from Table 8.8, where, as usual, a positive value designates exports and
a negative value imports. In all scenarios, Sweden trys to buy su�cient permits
to keep emissions at least at the 2000 period level, whereas the Netherlands is
a major net seller of permits. In conclusion, the further the overall emissions
are reduced, the more Switzerland increases its imports, the Netherlands reduces
exports and Sweden reduces imports of permits.

Scenario Country 2000 2010 2020 2030 2040

CH �0:8 �0:5 0:3 0:6 �1:6
0% NL �0:6 6:4 14:7 26:3 34:2

SW 1:5 �5:8 �15:0 �26:5 �32:6
CH �0:8 �1:5 �1:7 �3:7 �6:8

�20% NL �0:6 4:6 12:2 25:5 31:1
SW 1:4 �3:2 �10:8 �22:2 �24:2
CH �0:8 �2:7 �4:2 �6:6 �7:0

�40% NL �1:4 2:2 14:8 23:2 22:8
SW 1:7 0:6 �10:7 �16:5 �15:8

Table 8.8: Net export of CO2 emission permits (Mt/year).

As a �nal result, the e�ect on the aggregated GNP of bounding emissions and
trading permits is presented in Figure 8.5.4 As before, the aggregation is done
over the periods 2000{2040 with a discount rate of 2.5%. The origin of the x-axis
is marked by `+60%' to indicate that no emission limits are imposed; starting

4In the usual de�nition of GNP the repair costs due to climate-change-induced damages
(
oods, storms, etcetera) must be added to the GNP. Ecologically oriented economists criticize
this de�nition of GNP because then damages are considered positively as increasing the GNP.
In our Macro model, the GNP does not explicitly include the repair costs caused by climate
change, which implies a larger GNP in the baseline (Bu)-case. Consequently, this larger GNP
increases the GNP losses when the baseline case (Bu) is compared with a situation where CO2

emissions are limited and hence repair costs are reduced. Because IPCC estimate the damage
costs in the range of one to a few percents of GNP (cf. the introduction of Chapter 6) the above
baseline e�ect could signi�cantly in
uence the results in �gure 8.5.
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from there and going to the right, the emissions are increasingly reduced. On
the y-axis 100% represent the aggregated GNP in case (Bu), i.e. when num�eraire
is traded, but CO2 emissions are not bounded. The decrease in GNP caused by
bounding emissions follows either case (Bl), i.e. no tradeable emission permits, or
case (Cl) where the burden can be shared by trading permits. The (Bl) curves,
marked by a star, are generally lower than the corresponding (Cl) curves with the
exception of the Netherlands where trade of permits brings about slightly lower
GNP. As seen in Figure 8.5 the GNP losses are not equally distributed. Sweden's
GNP su�ers most in both cases and all scenarios, whereas the Dutch economy is
less a�ected. A possible explanation is the high costs involved in the phase-out
of nuclear power in Sweden compared with the lower costs involved in phasing
out coal plants in the Netherlands. It is also Sweden which gains most (reduces
its losses most) from trading permits if the non-trade case (Bl) is considered as
reference. In view of this the negotiation of initial endowments may improve
bene�ts/losses equity among the countries.

The GNP summed over all countries (`overall') decreases by a little more than
one percent, where trade can reduce the decrease by about 0:2%-points, that is,
trade reduces the GNP losses by roughly 20%. All GNP losses are small; indeed,
one percent of aggregated GNP by the year 2040 corresponds to an average
yearly growth rate of approximately 0:045%-points,5 something which is beyond
statistical measurability. In view of the criticism leveled at the de�nition of the
GDP in MM, however, the above values should be interpreted cautiously.

5Assuming a yearly growth rate g = 0:02 and a time horizon T = 40 years then a �rst
approximate answer is given by the equation (1+ g� l)T = 0:99 � (1+ g)T yielding l = 0:026%.
Because the losses are aggregated over the whole period T an improved estimation starts from

the equation
R T
0 (1 + g � l)tdt = 0:99 �

R T
0 (1 + g)tdt. For its approximation

PT

0 (1 + g � l)t =

0:99 �
PT

0 (1 + g)t a numerical solution based on bisectioning yields l = 0:045%.
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Summary

The results can be summarized as follows. First the discounted equilibrium prices
are very low; even for drastic reduction targets like �40% they are only around
13{14 US cents per liter of gasoline. The corresponding loss of aggregated GNP
is around 1{1.5%, which is also very low, corresponding to an anual growth rate
reduction of approximately 0:06%-points. Trading permits reduce the overall
GNP losses by about 20% when compared with unilateral reductions. Clearly,
this GNP `gain' from trading permits is strongly related to the distribution of
the initial endowment. Finally, the results indicate that it is pro�table to start
reducing emissions early and to leave emission reserves for the future.

We believe the results presented in this chapter contribute to the understanding
of important aspects of CO2 emission permits. However, they emanate from the
particular models and data chosen, and are in that sense speci�c. Nevertheless,
we are convinced that the economic and mathematical reasoning developed in
this work can be pro�tably applied to a variety of situations.



Appendix A

Notation and Basic Theorems

The chapter summarizes some basic mathematical material which is relevant to
the main part of this work. After some convexity de�nitions the characteriza-
tion of optima due to Karush, Kuhn and Tucker is given in Section A.1. The
Lagrangian dual problem, used in the decomposition of the Negishi-welfare prob-
lem, is discussed in Section A.2. Because both the Karush-Kuhn-Tucker charac-
terization of optima and the connection to the Lagrangian dual problem requires
di�erentiability, we give in Section A.3 a well known relaxation to continuous
functions. Finally Section A.4 gives a brief introduction to VIPs.

De�nition A.1 (cf. [7]) A set C � IRn is called convex if 8� 2 [0; 1] and
8x; y 2 C we have �x+ (1� �)y 2 C. A function f : D � IRn ! IR is called

� convex on D if 8� 2 [0; 1] and 8x; y 2 D we have f(�x + (1 � �)y) �
�f(x) + (1� �)f(y);
� pseudo-convex on D if f is di�erentiable on (an open set containing) D
and 8x; y 2 D with rf(x)T (y � x) � 0 we have f(y) � f(x);

� quasi-convex on D if 8� 2 [0; 1] and 8x; y 2 D we have f(�x+(1��)y) �
maxff(x); f(y)g.

The same de�nitions with concavity replacing convexity are obtained by exchang-
ing f with �f . Given di�erentiability of f , convexity implies pseudo-convexity
which in turn implies quasi-convexity. The latter is equivalent with convexity of
all level sets L� := fx j f(x) � �g, thus level sets of convex and pseudo-convex
functions are always convex. The following two sections are based on [7].

A.1 The Karush-Kuhn-Tucker Characterization

of Optima

The problem under consideration can be described as follows. Let X be a
nonempty, open subset of IRn and let f , gi for i 2 I and hj for j 2 J be functions
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from X to IR, where both I and J are �nite. The problem is to �nd a solution of

min f(x)

s.t. gi(x) � 0 8i 2 I;
hj(x) = 0 8j 2 J;
x 2 X:

9>>>=
>>>; (A.1)

Under suitable conditions such optimization problems can be replaced by a set
of equalities and inequalities. This is the content of the following theorems de-
veloped in the �fties and sixties, and which are today one of the most often used
mathematical tools in economic theory.

Theorem A.1 (Karush-Kuhn-Tucker, necessary conditions; [7, Theorem 4.3.6])
Consider the problem (A.1), suppose x� is a local solution and de�ne the set of
binding indices at x�, Ib = fi 2 I j gi(x�) = 0g. If f and gi 8i 2 Ib are di�eren-
tiable at x�, gi 8i 62 Ib are continuous at x�, hj 8j 2 J are continuously di�eren-
tiable at x�, and �nally the binding gradients frgi(x�); i 2 Ibg[frhj(x�); j 2 Jg
are linearly independent, then there exist scalars ui for i 2 Ib and vj for j 2 J
such that

rf(x�) +
X
i2Ib

uirgi(x�) +
X
j2J

vjrhj(x�) = 0

ui � 0 8i 2 Ib:
(A.2)

If gi 8i 62 Ib are also di�erentiable at x� condition (A.2) is equivalent to

rf(x�) +
X
i2I

uirgi(x�) +
X
j2J

vjrhj(x�) = 0

uigi(x
�) = 0

ui � 0

�
8i 2 I:

(A.3)

The linear independence of the binding gradients frgi(x�); i 2 Ibg[frhj(x�); j 2
Jg is called Kuhn-Tucker constraint quali�cation. Depending on the problem
it can be advantageous to replace this linear independence condition by other
conditions. A popular one is the so called Slater condition which implies the
Kuhn-Tucker constraint quali�cation.

De�nition A.2 (Slater constraint quali�cation) If there exists an �x such that

gi(�x) < 0 8i 2 I;
hj(�x) = 0 8j 2 J;

�x 2 X,

we say the constraints ful�ll the Slater conditions.
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While Theorem A.1 states conditions under which a so called KKT-point exists,
that is, a point x� where (A.2) holds, it is interesting to know when such a
KKT-point is an optimum.

Theorem A.2 (Karush-Kuhn-Tucker, su�cient conditions; [7, Theorem 4.3.7])
Suppose x� is feasible to problem (A.1), i.e. x� 2 X, gi(x

�) � 0 8i 2 I and
hj(x

�) = 0 8j 2 J. Assume further f and gi 8i 2 Ib are di�erentiable at x�,
gi 8i 62 Ib are continuous at x�, hj 8j 2 J are continuously di�erentiable at x�,
and that x� ful�lls (A.2). If f is pseudo-convex at x�, gi is quasi-convex at x� for
i 2 Ib, hj is quasi-convex at x� for j 2 J : vj > 0 and hj is quasi-concave at x

�

for j 2 J : vj < 0, then x� is a global optimal solution to (A.1).

Simplifying those sophisticated structural properties, we have the following equiv-
alence: Assume f and gi for i 2 I are convex, hj for j 2 J is a�ne, and either
the KKT constraint quali�cation at a feasible point x� or the Slater conditions
are ful�lled; then x� is a global solution to (A.1) if and only if it ful�lls the
KKT-condition (A.2).

A.2 The Lagrangian Dual Problem

Consider problem (A.1) where X may be closed. Then the Lagrangian dual
function � is de�ned as follows:

�(u; v) := inf
x2X

�
f(x) +

X
i2I

uigi(x) +
X
j2J

vjhj(x)

�
: (A.4)

Note that � can attain �1; based on � the following dual problem can be posed:

max
u�0; v

�(u; v): (A.5)

The following Theorem A.3 states that under the condition

9�x 2 X such that g(�x) < 0; h(�x) = 0; 0 2 intfh(x) j x 2 Xg (A.6)

the so called primal problem (A.1) has the same objective value as the derived
Lagrangian dual problem (A.5).

Theorem A.3 ([7, Theorem 6.2.4]) Let X � IRn be a nonempty convex set,
f : IRn ! IR and g : IRn ! IRjIj be convex, and let h : IRn ! IRjJj be a�ne.
Suppose the constraint quali�cation (A.6) holds. Then

infff(x) j x 2 X; g(x) � 0; h(x) = 0g = supf�(u; v) j u � 0; vg:
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Note that the constraint quali�cation (A.6) is closely related to the Slater con-
dition. As a consequence of the previous theorem the following so called `saddle
point' criteria can be derived which is based on

�(x; u; v) := f(x) +
X
i2I

uigi(x) +
X
j2J

vjhj(x): (A.7)

The notion `saddle point' is motivated from concavity of � in (u; v) for �xed x and
convexity in x for �xed (u; v) forming the image of a saddle; the `saddle points'
are under appropriate conditions simultaneous solutions to both the primal and
the dual problem.

Theorem A.4 ([7, Theorem 6.2.5]) Let X � IRn be a nonempty convex set, and
let f : IRn ! IR, g : IRn ! IRjIj and h : IRn ! IRjJ j. Suppose that there exist
�x 2 X and (�u; �v) with �u � 0, such that

�(�x; u; v) � �(�x; �u; �v) � �(x; �u; �v) 8x 2 X; 8(u; v) with u � 0. (A.8)

Then �x solves the primal problem (A.1) and (�u; �v) solves the dual problem (A.5).

Conversely, suppose that f and g are convex and that h is a�ne. Further, sup-
pose that the constraint quali�cation (A.6) is satis�ed. If �x solves the primal
problem (A.1) then there exists (�u; �v) with �u � 0, such that (A.8) holds true.

Note that the set X may be chosen freely, that is, depending on the situa-
tion it can be IRn or can contain a (sub-)set of the constraints gi; i 2 I or
hj; j 2 J , a circumstance which is very useful when using the Lagrangian dual
problem for decomposition. This situation di�ers from the Karush-Kuhn-Tucker-
characterization of optima where openness of X is required. It is exactly here
where equivalence of KKT-points and saddle-points holds: under convexity of f
and g and a�nity of h we have to require �x 2 intX in order to have equiva-
lence of KKT-points and saddle-points (SP). Di�erently stated, if the constraint
quali�cation (A.6) holds we have

f(�x; �u; �v)KKT j �x 2 intXg = f(�x; �u; �v)SP j �x 2 intXg;
where the index KKT refers to Karush-Kuhn-Tucker points (i.e. points satisfying
(A.2)) and SP to saddle-points (i.e. points satisfying (A.8)).

A.3 Di�erentiability and Continuity

Even though continuous functions are almost always almost nowhere di�eren-
tiable (that is, in the set of continuous maps the ones which are di�erentiable on
more than a set of measure zero have measure zero), they are in a sense arbitrarily
`close' to di�erentiable functions. Considering functions de�ned on a closed set
D let us de�ne the distance of two functions f : IRn ! IRm and g : IRn ! IRm by
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kf � gk1 := max
x2D
kf(x)� g(x)k:

There is actually a plethora of di�erentiable functions which approach in this
sense any (non-di�erentiable) continuous function. In the following theorem due
to Weierstrass polynomials are chosen:

Theorem A.5 (Weierstrass' approximation theorem) Let D � IRn be compact
and f : D ! IRm be continuous. Then given any " > 0 there is a polynomial
g : D ! IRm such that

kf � gk1 < ":

A.4 An Introduction to Variational Inequality

Problems (VIP)

As a start, two examples give a �rst intuition on variational inequalities (cf. [65]):

1. Let a; b 2 IR, and f : [a; b]! IR be continuously di�erentiable. The points
x0: f(x0) = minx2[a;b] f(x) have to be determined. Three cases may occur:

(a) if x0 2]a; b[, then f 0(x0) = 0;
(b) if x0 = a, then f 0(x0) � 0;
(c) if x0 = b, then f 0(x0) � 0.

These three cases can be understood as x0 solves the variational inequality
problem f 0(x0)(x� x0) � 0 8 x 2 [a; b].

2. Let D � IRn be a closed, convex set and f : D ! IR be continuously
di�erentiable with minimum x0 2 D. Let x 2 D be an arbitrary point;
then the function

�(t) := f(x0 + t(x� x0)); 0 � t � 1;

attains its minimum at t = 0. From the �rst example follows

�0(0) := rf(x0)T (x� x0) � 0 8x 2 D:
Hence, any minimum x0 ful�lls the variational inequalityrf(x0)T (x�x0) �
0 8x 2 D.

A.4.1 Existence and Uniqueness of Solutions for VIPs

De�nition A.3 (Variational Inequality Problem, VIP(f;D), [65, problem 4.1])
Given f : D � IRn ! IRn; �nd x 2 D, such that

f(x)T (y � x) � 0 8y 2 D: (A.9)
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The existence of solutions to VIP(f;D) can be shown by means of �xed point
arguments. We call h a contraction mapping, if kh(x)� h(y)k � �kx� yk for all
x; y 2 D, and some � 2 [0; 1). In the case of � = 1, h is called non-expansive.
With this notion the following obvious contraction lemma can be formulated:

Lemma A.6 ([65, Theorem 1.2]) If h : D � IRn ! D is a contraction mapping,
then there exists a unique �xed point of h.

Note that D may be non-compact in the previous lemma. h being contracting
can be replaced by continuity if D is additionally compact, cf. Brouwer's Fixed
Point Theorem 2.2.

Finally, to bridge the gap between �xed points and variational inequalities, the
concept of projection is needed. If D � IRn is a closed, convex subset, then for
each x 2 IRn there is a unique y 2 D with

kx� yk = inf
z2D
kx� zk;

called the projection of x onto D, and written y = PDx. Obviously, PDx =
x 8x 2 D. The following lemma characterizes projections.
Lemma A.7 ([65, Theorem 2.3]) If D � IRn is closed and convex, then y = PDx
is the projection if and only if

yT (z � y) � xT (z � y) 8z 2 D:

This can be written in the equivalent form (y�x)T (z�y) �

D

xy � xy

z

z � y

Figure A.1: Characteriza-
tion of projection.

0 8z 2 D and interpreted as `y is the outermost point in D
towards x', see Figure A.1. From Lemma A.7 it follows that
the projection map is nonexpansive, i.e. kPDx � PDyk �
kx � yk for all x; y 2 IRn, and thus Lipschitz-continuous.
After these preparations, a �rst existence result for VIP
can be stated.

Theorem A.8 ([65, Theorem 3.1]) If D � IRn is convex and compact and f :
D ! IRn is continuous, then there exists a solution to VIP(f;D).

The proof of Theorem A.8 gives an idea of the relevance of projection and �xed
points, therefore it is outlined here:

Multiplying (A.9) by �1 and adding xT (y�x) on both sides yields the equivalent
relation

xT (y � x) � (x� f(x))T (y � x) 8y 2 D:
With 1l the identity mapping, PD � (1l � f) : D ! D is continuous. Hence, by
Proposition 2.2, there exists a �xed point x 2 D, i.e. x = PD(x�f(x)). Together
with the characterization of projection, this can be written as

xT (y � x) � (x� f(x))T (y � x) 8y 2 D
which is exactly the relation to be proved.
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The proof shows that every VIP(f;D) is equiva-

D

x = PD(x � f(x))f(x)
x� f(x)

Figure A.2: VIP as �xed point problem.

lent with the �xed point problem x = PD � (1l�
f)(x), see Figure A.2.

In Theorem A.8, the existence of a solution was
proven for bounded D. The example f(x) =
exp(x) withD = IR shows that this condition can
not be dropped without further considerations.

De�ne Br(0), the ball with center 0 and radius r, and set Dr := r
x

f(x)

D
Dr

Figure A.3: Charac-
terization of a solu-
tion to VIP(f;D) in
case of unboundedD.

D\Br(0). Then the following lemma gives a sharp condition for the
existence of a solution in the case of unbounded D, see Figure A.3.

Lemma A.9 ([65, Theorem 4.2]) If D � IRn is convex and closed,
and if f : D ! IRn is continuous, then there exists a solution
to VIP(f;D) if and only if 9r > 0, such that a solution xr of
VIP(f;Dr) satis�es kxrk < r.

A more useful condition is based on a notion called coerciveness;
f : D � IRn ! IRn is called coercive, if 9x0 2 D with

(f(x)� f(x0))T (x� x0)
kx� x0k ! +1 8x 2 D; kxk ! 1: (A.10)

Rewriting (A.10) in the form f(x)T (x�x0)=kx�x0k�f(x0)T (x�x0)=kx�x0k !
+1 shows that the projection of f(x) onto the unit vector (x � x0)=kx � x0k
must grow to in�nity, as x 2 D tends to in�nity. As a simpli�ed picture one
can think of a vector�eld with all vectors f(x) going away from x0 and becoming
longer the further away x is from x0 (a star with growing rays).

Theorem A.10 ([65, Corollary 4.3]) If f : D � IRn ! IRn is coercive, D is
convex and closed, then VIP(f;D) has a solution.

A solution to VIP(f;D) may not be unique. There is, however, a natural condi-
tion which ensures uniqueness. If x; x0 are two solutions of VIP(f;D), we have

f(x)T (y � x) � 0

f(x0)T (y � x0) � 0

�
8y 2 D:

Setting y := x0 in the �rst and y := x in the second relation and adding them
yields

(f(x)� f(x0))T (x� x0) � 0:

Hence the existence of several solutions implies this last relation, or reversely, if
this last relation is denied, there is at most one solution. This denial is called
strict monotonicity and is de�ned below.
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De�nition A.4 (cf. [91, 71]) f is called
monotone over D, if (f(x)� f(y))T (x� y) � 0 8x; y 2 D,
pseudo{monotone over D, if [ f(y)T (x� y) � 0) f(x)T (x� y) � 0 ] 8x; y 2 D,
strictly monotone over D, if (f(x)� f(y))T (x� y) > 0 8x; y 2 D;
strongly monotone over D, if (f(x) � f(y))T (x � y) � �kx � yk2 8x; y 2 D,
� > 0; and
strongly f -monotone over D, if (f(x)�f(y))T (x�y) � �kf(x)�f(y)k2 8x; y 2
D, � > 0:

To get some intuition, note that under suitable assumptions the notion of mono-
tonicity of f is equivalent with convexity of some F where f � rF , see Propo-
sition 3.1.

A.4.2 Optimization and VIP

This section relates the problem of minimizing a function F : D � IRn ! IR to
VIP(rF;D).

Proposition A.11 Let D be convex, let F : D ! IR be once continuously dif-
ferentiable, and set f(x) := rF (x); then we have

(i) ([65, Proposition 5.1]) x solves VIP(f;D) if F (x) = miny2D F (y);

(ii) ([65, Proposition 5.2]) suppose F is convex and x solves VIP(f;D), then x
satis�es F (x) = miny2D F (y);

(iii) (cf. [56, Satz 4.2]) F (x) = miny2D F (y) if f(y)T (y � x) � 0 8y 2 D.

While part (i) and (ii) are rather obvious as can be seen from the �rst example in
this section, the su�ciency condition presented in (iii)|which can be di�cult to
check|is only rarely found in the literature. The points x satisfying f(y)T (y �
x) � 0 8y 2 D are called `weak solutions' of VIP(f;D).

In the previous proposition optimization problems are related to certain equiva-
lent VIPs. Using so called gap functions, discussed in Section 3.2, every VIP can
be transformed into an optimization problem. Due to the speci�cities of the gap
functions, however, these optimization problems are in general not tractable.



Appendix B

Proving the Existence of
Equilibria using VIPs

For point-to-point and continuous excess maps Theorem 2.1 and Proposition 2.2
guarantee the existence of an equilibrium. Here we want to discuss the non-
continuous or multi-valued case, which allows to regain the proof of existence of
a solution to EEP (see De�nition 1.4) under relaxed assumptions. It requires,
however, to leave the aggregated view of an excess map and to analyze the un-
derlying structures of the economic agents.

This chapter is based on Yao [103], where proofs of existence of solutions to|in a
certain sense extended|VIPs are discussed and subsequently applied to economic
equilibrium problems.

The contribution lies in the bridging between the general formulation due to Yao,
and the speci�c situation of our economy described in Chapter 1.

As usual in the context of VIPs, the notion `generalized' applies to the situation
where the operator is set-valued; a further extension is achieved with the so called
generalized quasi-variational inequality problems (GQVIP), where the feasibility
set is variable.1 To clarify the notation, all v- and a-related quantities have the
meaning from Section 2.3, whereas f , x and y are general quantities and do not
refer to any previous usage. Otherwise the situation described in Section 1.1 is
assumed.

De�nition B.1 (Generalized quasi-variational inequality problem (GQVIP(f;K;
D)), [12]) Let D � IRn, f : D ! 2IR

n

, and K : D ! 2D; �nd x 2 D and � 2 f(x),
such that

�T (y � x) � 0 8y 2 K(x): (B.1)

1Note that there is also a notion called quasi-monotone which relates to quasi-convexity in
the same way as pseudo-monotonicity to pseudo-convexity, cf. Proposition 3.1.
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If the operator f is single valued the problem is called QVIP(f;K;D). The
relevance of this formulation can be seen from the consumer problem (1.5), where
the feasibility set depends on the price and production, which are determined by
other agents|the producers and the price agent in the more general setting of
problem (2.9). Recalling the splitting of variables v = (va; v�a) for an agent a 2 A,
we assume that the feasible set depends on the action of all other agents, i.e. we
require va 2 Ka(v�a), which is a notational simpli�cation for (2.7) and (2.8). Let
us further assume that for each agent a 2 A there exists Va such that Ka(v�a) � Va
for all v�a 2 V�a.
In view of Lemma 2.7, rewriting (2.9), we call a point v� an equilibrium of this
abstract economy if for all a 2 A

v�a 2 Ka(v
�
�a) and fa(v

�
a) = max

va2Ka(v��a)
fa(va; v

�
�a): (B.2)

Consequently we abbreviate such an abstract economy by [fa; Ka; Va]a2A, and
write furthermore F = (�rvafa)a2A, K := �a2AKa : V ! 2V and V := �a2AVa.

In the sequel f is a general notion for a mapping and can be real or vector
valued, its meaning should always be clear from the context. F on the other hand
is reserved for the compound negative gradient of the pseudo-concave objective
functions of the agents. To use the VIP-based machinery, the following lemma,
which slightly generalizes Lemma A.11, relates optimization problems to VIPs.

Lemma B.1 Let f : IRn ! IR be pseudo-concave and di�erentiable, D � IRn

nonempty, closed and convex;

(a) if x� solves VIP(�rf;D) it is also a solution to maxx2D f(x);

(b) if rf is continuous and x� is a solution to maxx2D f(x), then x� solves
also VIP(�rf;D).

To see (a) note that a solution to VIP(�rf;D) is characterized by�rf(x�)T (z�
x�) � 0 8z 2 D and that by pseudo-concavity f(x�) � f(z) 8z 2 D.
To prove (b) assume x� 2 argmaxx2D f(x) and x

� does not solve VIP(�rf;D),
that is, there exists z� 2 D : rf(x�)T (z� � x�) > 0. By continuity of rf and
convexity of D there exists � 2 (0; 1] such that rf(x(t))T (z�� x�) > 0 8t 2 [0; �]
where x(t) := x� + t(z� � x�). But then

f(x(�))� f(x�) =

Z �

0

rf(x(t))T (z� � x�) dt > 0

and so x� 62 argmaxx2D f(x). This contradiction proves that x� has to solve also
VIP(�rf;D).
Using this lemma it is su�cient to �nd a solution to VIP in order to have a
solution to the maximization problem. The reverse requires continuity of the
gradient map.
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The next lemma gives a trivial characterization of the solution set of VIPs which
will be used in the theorems below.

Lemma B.2 x� is a solution to VIP(�rf;D) if and only if

x� 2 fx 2 D j sup
z2D
�rf(x)T (x� z) � 0g:

x� is a solution to VIP(�rf;D) if and only if

�rf(x�)T (z � x�) � 0 8z 2 D () inf
z2D
�rf(x�)T (z � x�) � 0

() sup
z2D
�rf(x�)T (x� � z) � 0:

The situation is now as follows; in order to �nd for a speci�c a 2 A a solution to
the maximization problem (B.2), the corresponding VIP(�rvafa(va; v�a); Ka(v�a))
can be solved. Based on that we expect that a solution of QVIP(F;K; V ) is a
simultaneous solution of the maximization problems (B.2) for all a 2 A, that is,
an equilibrium of the abstract economy.

Lemma B.3 If v� solves QVIP(F;K; V ), where F (v) := (�rvafa(v))a2A, then
v� is a simultaneous solution to (B.2) for all a 2 A.

Let v� be a solution to QVIP(F;K; V ); assume that there exists a 2 A for
which v�a is not a solution to VIP(�rvafa; Ka(v

�
�a)), i.e. 9z0a 2 Ka(v

�
�a) such that

�rvafa(v�)T (z0a � v�a) < 0. Let z := (z0a; v
�
�a); then we haveX

a2A
�rvafa(v�)T (za � v�a) = �rvafa(v�)T (z0a � v�a) < 0

which contradicts v� being a solution. This contradiction proves that a solution
to QVIP(F;K; V ) is also a solution to all its subproblems VIP(�rvafa; Ka(v

�
�a))

and with Lemma B.1 the claim follows.

A function g : IRn ! IR is said to be lower semi-continuous (l.s.c.) if the set
fx j g(x) � �g is closed for any � 2 IR, or equivalently, for all convergent
sequences xn ! x we have g(x) � lim infn!1 g(xn). Next, we say a (set-valued)
function f(v) has convex values (or is convex valued), if the set f(v) is convex.

Now the prerequisites are ready for proving existence of an equilibrium based on
the following general existence result for GQVIP.

Theorem B.4 ([103, Theorem 3.3]) Let D � IRn be nonempty compact and con-
vex, f : D ! 2IR

n

and K : D ! 2D. Suppose that the following conditions are
satis�ed:
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1. The mapping f has nonempty, compact and convex values, and for every
�xed y 2 D the mapping

x 7! inf
�2f(x)

�T (x� y)

is lower semi-continuous on D;

2. K has nonempty, closed and convex values, and for every �xed p 2 IRn the
set fx 2 D j pTx � sup

y2K(x)

pTyg is closed;

3. the so called interacting set fx 2 D j sup
y2K(x)

inf
�2f(x)

�T (x� y) � 0g is closed.

Then there exists a solution to GQVIP(f;K;D).

Assuming jAj < 1, the following existence theorem for the abstract economy
can be deduced from the previous theorem.

Theorem B.5 ([103, Theorem 6.1]) Consider an abstract economy [fa; Ka; Va]a2A
where V = �a2AVa � IRn; suppose that the following conditions are satis�ed:

1. Va is nonempty, compact and convex for all a 2 A;
2. fa is pseudo-concave with respect to va for all a 2 A;
3. for every �xed y 2 V the mapping x 7! F (x)T (x � y) is lower semi-

continuous on V , where F (v) = (�rvafa(v))Ta2A;
4. Ka(v�a) � Va is nonempty, closed and convex for all a 2 A, and for every

�xed p 2 IRn the set
�
v 2 V j pTv �Pa2A supz2Ka(v�a) p

T
a z
	
is closed, where

pa denotes the part of p related to agent a;

5. the interacting set I := fv 2 V j sup
z2K(v)

F (v)T (v � z) � 0g is closed.

Then there exists an equilibrium.

The proof is a direct application of Theorem B.4 using the relation between
optimization problems and VIP given in Lemma B.1. Note that Condition 3. is
trivially satis�ed if fa is not only di�erentiable but continuously di�erentiable, and
that the so called interacting set is exactly the set of solutions to QVIP(F;K; V ).

To apply this general framework to the situation in Section 1.1 we have to relate
closedness in Condition 4. and 5. to properties of K. First note, however, that
for all �xed v 2 V we have from jAj <1 and additivity of the objective

sup
z2K(v)

pT z = sup
z2K(v)

X
a2A

pTa za =
X
a2A

sup
za2Ka(v�a)

pTa za:



109

Lemma B.6 Let V 2 IRn be compact and K : V ! 2V have nonempty, closed
and convex set values for all v 2 V . If K is closed then for every p 2 IRn the set
P := fv 2 V j pTv � sup

z2K(v)

pT zg is closed.

AssumeK is closed (cf. De�nition 2.1); take any p 2 IRn and convergent sequence
fvng � P, vn ! v1. We have to show that v1 2 P. Choose a sequence zn 2
argmaxz2K(vn) p

T z. Because V is compact fzng has a convergent subsequence
which, without loss of generality, is assumed to be fzng and converges to z1. We
then have the following chain of inequalities,

pTv1 = lim
n!1

pTvn � lim
n!1

sup
z2K(vn)

pT z = lim
n!1

pT zn = pT z1 � sup
z2K(v1)

pT z;

where the second inequality is due to vn 2 P, and the last inequality follows from
closedness of K which implies z1 2 K(v1). Thus v1 2 P and so P is closed.

Lemma B.7 Let V 2 IRn be compact and K : V ! 2V have nonempty, closed
and convex values for all v 2 V . If K is open and F continuous, then the
interacting set

I := fv 2 V j sup
z2K(v)

F (v)T (v � z) � 0g

is closed.

Take any convergent sequence fvng � I, vn ! v1; we have to show that
v1 2 I. Let z1 2 argmaxz2K(v1) F (v

1)T (v1� z) which exists due to nonempty
and compact values of K(v1) plus continuity of F . From openness of K follows
the existence of a sequence fzng, such that zn 2 K(vn) 8n 2 IN and zn converges
to z1. We then have the following chain of inequalities:

sup
z2K(v1)

F (v1)T (v1 � z) = F (v1)T (v1 � z1)

= lim
n!1

F (vn)T (vn � zn)
� lim

n!1
sup

z2K(vn)

F (vn)T (vn � z)

� 0:

The second relation follows from convergence of both fvng and fzng together
with continuity of F , the last is a consequence of vn 2 I 8n 2 IN.
Recalling the comments at the end of Section 2.1, we see that by the previous
two lemmata we ensure a continuous feasible set map K which, together with
continuity of fa for all a 2 A, implies a closed optimal set map, and this is exactly
what is required for applying Kakutani's Theorem. In that sense Theorem B.5
is a generalization of Kakutani's existence Theorem for this class of problems. If
we assume that K is de�ned by sets of (in-)equalities, closedness of K follows
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already from continuity of the (in-)equalities. However, openness of K requires
usually constraint quali�cations to hold, see Flippo [30, Theorem 3.1{3.4]. In
order to verify openness of K the following lemma reduces openness of the overall
feasibility set map K to openness of the feasibility set map Ka for each agent
a 2 A.

Lemma B.8 K : V ! 2V is open if and only if Ka : V ! 2Va is open for all
a 2 A.

`=)': Choose a 2 A and a convergent sequence vn ! v1 in V , and choose z1a 2
Ka(v

1). Because K = �a2AKa there exists z
1 2 K(v1) satisfying (z1)a = z1a ,

where ( � )a symbolizes the vector of a-related components; from openness of K we
conclude that there is a convergent sequence zn ! z1 with zn 2 K(vn) 8n 2 IN.
But by the de�nition of K we have then (zn)a 2 Ka(v

n) 8n 2 IN and from
convergence of zn ! z1 we conclude convergence of its part (zn)a ! (z1)a = z1a .

`(=': Choose a convergent sequence vn ! v1 in V , and choose a z1 2 K(v1).
Because Ka is open for all a 2 A there exist convergent sequences zna ! (z1)a
where zna 2 Ka(v

n). From this construction we conclude zn := �a2Azna 2 K(vn)
and zn ! z1.

The analogue, where closedness of K is equivalent with closedness of Ka for all
a 2 A, is straightforward. One might hope that, due to the speci�c structure of
our K deduced from (2.9), closedness of the interacting set I is given. This is in
general not true as is demonstrated by the example depicted in Figure B.2. But
if we are more modest and restrict our consumer and producer agents to (1.4)
and (1.5) we succeed.

Lemma B.9 The feasibility map Ka is open for the problems (1.4), (1.5) and
(2.3).

The problems (1.4) and (2.3) have a constant feasibility map and so they are
open. Problem (1.5)|though most simple in the structure of its feasibility map|
is not so obvious. Without loss of generality we assume there is exactly one con-
sumer and producer and drop therefore the corresponding indices; the feasibility
map is

K(y; p) = fx j pT (x� x0 � y) � 0g:
Let (yn; pn) ! (y1; p1) be a convergent sequence and choose x1 2 K(y1; p1).
Then the distance between x1 and K(yn; pn) is

�(x1; K(yn; pn)) = maxf0; p
nT

kpk(x
1 � x0 � yn)g:

Because p 2 � (the unit simplex), � is continuous in (yn; pn), and by choosing the
minimizer of the distance function in K(yn; pn) as xn, we have found a convergent
sequence with xn 2 K(yn; pn) and xn ! x1.
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From the previous lemma we have an open feasibility map, closedness follows
from continuity of the underlying restrictions in the setting of Section 1.1, and
so we have the following corollary of Theorem B.5.

Corollary B.10 The equilibrium problem based on De�nition 1.4 and its related
de�nitions and assumptions in Section 1.1 has a solution.

The adverse of this bright view shows up as soon as the feasibility

x1

x2
(1; 1)

(�1; p)

Figure B.2: A non-
open K(p).

maps are more complicated. Assume for example that a consumer
has some additional constraints which are even independent of prices
or production quantities. To demonstrate the di�culties and high-
light the intimate relation of l.s.c. of the value map and closedness
of the feasible set map, Figure B.2 shows a 2-dimensional simple ex-
ample. The feasibility set (gray shaded) is [0; 1]2, further cut by a
rotating constraint ((x1; x2)� (1; 12))(�1; p)T � 0. The problem is to
maximize 1

4
�[(x1�1)2+(x2�1)2] whose level curves form circles and

are partly dotted drawn. Let pn = 1
n
form a sequence converging to

0; the resulting feasible set K(pn) shrinks continuously maintaining
always a non-empty interior. The solution of the maximization prob-
lem for all pn stays at xn = (1; 1

2
) with constant objective value 0. In the limit

p1 = 0, however, K(p) expands non-continuously to 1 � [0; 1], and the solution
value jumps to 1

4
. Openness of K forbids exactly this non-continuous growth of

K, and as can be seen from this example, this condition can in general not be
weakened.
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Appendix C

The Original Markal and
Markal-Macro Models

For some general comments on energy economy models see Section 6.2. Introduc-
tory notes are also given at the beginning of Chapter 7. Here we restrict ourselves
to giving an overview on the linear energy-model Markal in the �rst section and
a more detailed description of the nonlinear macroeconomic model Macro in the
second section.

C.1 Markal

The linear model Markal (Market Allocation) was mainly developed in the late
seventies by Fishbone et al [27, 28] at BNL1 in collaboration with and ordered by
the ETSAP-group2, which is itself an outcome of IEA. Originally written in the
language OMNI, Goldstein [42] translated the model in the early nineties into
GAMS3. The purpose of this section is to give an idea of the structure of Markal
without going into details which can be found e.g. in Kypreos [68].

The fundamental concept of this model is the so called Reference Energy System
(RES), cf. Figure C.1. RES is a process-oriented 
ow-chart covering all possible
connections between primary energy sources and �nal energy services. It contains
a rich set of intermediate nodes for transformations, and on its edges all kind
of economical, technical and ecological information are attached. The solution
process in Markal can thus be interpreted as a search for a minimal cost 
ow
in the feasible set of paths admitted by RES, satisfying the given demand in
the sinks. The resulting Markal is a dynamic linear programming (LP) problem,
which, given exogenously the demand for a number of di�erent energy services
for the di�erent time periods, searches for the cheapest possibility to satisfy the

1Bruckhaven National Laboratory in the USA.
2Energy Technology Systems Analysis Project.
3General AlgebraicModeling System.
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Figure C.1: Objects of the Reference Energy System.

demand. It comprises a description of the available and|in the near future|
expected technologies to become available. Depending on the number of time
periods and the details in the technological description, it can contain up to
5,000{10,000 activities and constraints respectively.

The required demand for energy services can be generated exogenously by ap-
propriate models, or endogenously by linking Markal to a macroeconomic model
like Macro. In case of Switzerland the demand generator used is called SMEDE4

and is an adaption and implementation of MEDEE-S, originally developed by
B. Lapillonne at the Institut Economique et Juridique de l'Energie at Universit�e
des Sciences Sociales de Grenoble. SMEDE computes, based on technological,
economical and social data, the demand for the di�erent energy services for a
speci�ed time period. Hence its results depend crucially on the scenarios given,
like the economic growth rate in the future, demographic development, and many
more. The model Macro, which is an alternative way to generate the demand
endogenously, is described in the next section.

The activities of Markal can be subdivided into three groups:

Capacities: Reserves (e.g. oil) and capacities of various technologies or plants.

Activities: Annual production of all processes (e.g. electricity or heat).

Energy-resources: Annual consumption of energy carriers.

The restrictions can be grouped as follows:

Capacity-transfer: These inter-period constraints connect the available capaci-
ties with foregoing investments and depreciation.

4Swiss MEDE, see Kypreos [67].



C.2 Markal-Macro (MM) 115

Demand: Supply must be greater or equal demand for each energy service
in each period.

Fuels budget: The sum of imports, depletion of reserves or resources, and the
production must meet the consumption of the plants and of other
demand sources. This holds for all fuels and time periods.

Electricity budget: Analogous to the above budget of fuels.

Heat budget: Extending the previous two budgets the regional structure is taken
into account for the heat.

Load-restrictions: Guarantee coverage of peak demand with existing capacity.

Plant structure: Models time for maintenance of plants, or period dependent
changes in capacities like river power plants.

Investment- and resource-usage: Period-speci�c investment- and plant-capacity-
restrictions are in this category as well as time related constraints
for introducing new technologies.

Rest: All other restrictions; this can be region speci�c, like the usage
of electric heaters in Switzerland which is regulated by law and
restricted by the capacity of the net.

The overall (discounted) cost include all variable costs (e.g. for buying fuels),
�xed costs (e.g. for building plants), and �nally the so called `salvage costs' which
account for the problem when a plant is not yet at the end of its life time when
the model reaches its time horizon.

C.2 Markal-Macro (MM)

Markal-Macro is a synthesis between the bottom-up engineering model Markal
described in the previous section and a top-down macroeconomic model called
Macro. Analog to the previous section the presentation of Macro is limited;
more details can be found in [76, 77, 73, 75, 74]. MM allows to investigate
the relationship between economic growth, demand for energy services and the
structure of the energy sector. Macro is supply-oriented, i.e. it is assumed that
the (aggregated) production is fully consumed. The author of Macro motivates
it as follows:

[: : : ] macroeconomic models, with their descriptions of e�ects within
the total economy but fewer technical details on the energy system,
tend to overestimate future energy demands[.] Conversely, [: : : ] engi-
neering models, ignoring feedbacks to the general economy and non
technical market factors but containing rich descriptions of technol-
ogy options, tend to take to optimistic a view of conservation and the
use of renewable energy resources [: : : ] Manne and Wene [76]
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Of special interest with regard to such a hybrid model is the in
uence of changing
energy/fuel prices or limiting ecological e�ects on macroeconomic indicators like
the GDP (gross domestic product). Figure C.2 sketches the overall structure of
MM.

Markal Macro
demand of useful energy

energy cost

?

labor

-consumption
-

investment

capital

�
-

6

-
ressources
technologies
environmental restrictions

)

Figure C.2: The model Markal-Macro following Manne and Wene [76].

Markal can thus be understood as an oracle which, given the demand for useful
energy by Macro, returns the cost in each period. Because the costs are minimal
while all energy services are fully `consumed', MM can be seen as a partial equi-
librium model in the energy sector. In this setting Macro is the master-program
representing

[: : : ] a macroeconomic model with an aggregated view of long-term
economic growth. The basic input factors of production are capi-
tal, labor and individual forms of energy. The economy's outputs
are used for investment, consumption and interindustry payments for
the cost of energy. Investment is used to build up the stock of capi-
tal. The model clearly distinguishes between autonomous and price{
driven conservation. Manne and Wene [76]

In the following detailed description we assume 10 years per period t and de-
note by T the set of time periods. The objective function of (Markal-)Macro is
called utility and de�ned as logarithm of consumption. One of the most relevant
exogenously determined quantity is labor Lt, further exogenous coe�cients not
discussed here include �, �, a, bd, grow, k, aeeifacd;t, supplyj;d;t, costj;t, c, c�,
expf, : : : On the top level of Macro we �nd the variables Ct (consumption), It
(investment) and ECt (energy-cost), followed by Kt (capital) and Dd;t (demand
for energy-service of kind d). Finally, the variable XCAP�;t permits to use the
technology � beyond its availability but penalizes it by additional cost.

Even though all quantities have a period index t 2 T , they relate always to
one year. E.g. Ct is the mean consumption per year of period t, and It is the
investment per year in the average of period t.

Macro consists of only 4 restrictions:5 USEt (usage of production), PRDt (pro-
duction), CAPt (capital accumulation) and TC (terminal condition). In addition
to these economic constraints, relations describing the link between Markal and
Macro are needed. While the �rst T�1 periods comprise 10 years, the last period

5But|as in Markal|each restriction is repeated for every period, thus there are theoretically
about 4jT j restrictions. In the implementation, however, this number is reduced by using some
obvious algebraic simpli�cation possibilities.
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T represents the rest of the time horizon to in�nity. The objective is to maximize
`utility'6

U(C) :=
T�1X
t=1

udf t logCt + udf T
1

1� (1� udrT )10
logCT ; (C.1)

where udf t =
Qt�1

�=0(1�udr � )10 is the utility discount factor for period t computed
from the average annual utility discount rate in period � , udr� . The exponent
represents the number of years per period. The fraction in the last summand
stems from the summation of a geometric sequence

P1
n=0 q

n = 1=(1� q). Hence
this implicit terminal condition assumes a constant growth in the future leading
to a higher weight of consumption in the last period of the optimization problem.

Next, the constraint USEt distributes production Yt on consumption, investment
and energy cost:7

Yt = Ct + It + EC t: (USEt)

The production is determined by a nested CES-function8 of the form

Yt =
h
aK��

t L
�(1��)
t +

X
d
bd D

�
d;t

i1=�
: (PRDt)

a; bd; � and � are coe�cients, Kt is the capital stock accumulated up to period t,
Lt is the Labor(-potential) in period t, and Dd;t is the demand for energy services
of form d in period t. Thus, production is determined on the �rst level by a
capital-labor-aggregate and di�erent energy services. On the next lower level the
capital-labor-aggregate connects capital and labor in a Cobb{Douglas function
�xing the elasticity of substitution between capital and labor to 1. Here, � can
be interpreted as optimal share of capital in the aggregate. Price-induced energy
savings are essentially determined by �, the elasticity of substitution between
energy and the capital-labor-aggregate. It holds � = 1=(1� �), see Chiang [13].
The previous two relations, (USEt) and (PRDt), assume implicitly that the gross
value of energy services is captured in Yt, whereas the outlay EC t must be sub-
tracted explicitly in a second step to gain the net production from energy services.

The long-term economic growth is mainly determined by the exogenously given
labor supply Lt and its productivity, cf. Figure C.2. Initially, L0 is set to 1 and
subsequently increased following

Lt+1 = (1 + grow)10Lt; (Lt+1)

where grow is the potential growth rate of the economy. As mentioned, we have
chosen for the ease of exposition 10 years per period, hence the exponent of 10.

6More precisely, U(C) is a utility index; the absolute quantity U(C) has no direct economic
interpretation, hence U(C) is no cardinal utility but only an ordinal index.

7As a notational convenience we use the gams-related notion that an equation has to be
repeated for each meaningful occurrence of indices which are given in the tag. As an example
the tag (USEt) indicates that the corresponding equation is repeated for all t 2 T .

8Constant elasticity of substitution.
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Having chosen � and �, the quantities a and bd are determined by calibrating the
model using real data.

On the one hand, capital Kt is accumulated by investments It, on the other hand
it is depreciated by a given annual capital depreciation factor k:

Kt+1 = (1� k)10Kt + 5((1� k)10It + It+1): (CAPt+1)

The quantity 5((1�k)10It+ It+1) permits a better estimation of the mean invest-
ment in period t. Initially, we set I0 = (grow + k)K0.

Finally, the following terminal condition guarantees reasonable investments in
the last period:

KT (grow + k) � IT : (TC)

This `primal' terminal condition reduces some of the e�ects which are caused by
the �niteness of the time horizon.

The model description is completed by outlining the connection between Markal
and Macro. As mentioned above, Markal requires the energy services to be given
exogenously, or to state it reversely: the link between Macro and Markal has
to generate the demand for energy services from the state of Macro. Let Xj

be an activity of Markal supplying useful energy of the form d proportional to
supplyj;d. With the `autonomous energy e�ciency improvements factor' aeeifacd,

9

the demand constraints for Markal are for all meaningful combinations (d; t) given
by X

j
supplyj;d;tXj;t = aeeifacd;tDd;t: (C.2)

To transfer the costs from Markal to Macro the link computes for each activity
and period the cost costj;t per unit of activity Xj;t. A �rst approach isX

j
cost j;tXj;t = EC t;

because the accelerated introduction of technological capacities is possible but
penalized, a quadratic term is added,X

j
cost j;tXj;t + c

X
�
c�XCAP

2
�;t = EC t: (C.3)

Here XCAP�;t is the amount of capacity installed beyond the capacity expansion
factor expf. Therefore the last constraint needed is

CAP�;t+1 � expf CAP�;t + XCAP�;t+1: (C.4)

9aeeifacd allows to account for energy saving e�ects induced by the general technological or
social development. As mentioned above there is also a price-induced energy saving possibil-
ity available by the substitution of energy with the capital-labor-aggregate in the production
function.
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Putting the pieces together, MM can be written as follows:

max U(C)

s.t. (C:1){(C:4); (USEt); (PRDt); (Lt+1); (CAPt+1); (TC);

(all other Markal-Macro constraints):

9>=
>; (C.5)

By substituting (PRDt) and (USEt) into the objective function (C.1), and by
further linearizing (C.3), the whole set of constraints of MM can be kept linear.
This supports e�cient solution techniques and is exploited e.g. in Minos5, the
solver used. Convexity of Markal-Macro is shown in Appendix D

C.2.1 Discussion of Some Aspects

In the objective function the logarithm of consumption log(Ct) is chosen and
not, say, simply Ct, GDP or GNP, because choosing a linear function as the
objective has a strong tendency to produce `bang-bang' solutions. For example,
consume nothing and invest everything in all periods prior to the end of the
horizon; then consume everything at the end of the horizon. Furthermore, most
applied general equilibrium modelers focus on consumption rather than GDP
because GDP includes investment as well as consumption. Investment is like
other costs of doing business usually viewed as a means to an end|not an end in
itself. Next, a nested Cobb-Douglas function within a CES production function
is chosen instead of just a one-level CES-function where all production factors
are equally treated, because the former permits the handling of two basic `facts':
(i) the elasticity of substitution between capital and labor is usually estimated
as something close to unity; and (ii) the price elasticity of demand for energy is
usually estimated as something a good deal lower than unity. Such a production
function is therefore chosen not only in Markal-Macro, but also in ETA-Macro
and Global2100.

Among the shortcomings of Macro are (i) the aggregation of the economy which
inhibits the analysis of distributional e�ects, e.g. between economic sectors or so-
cial groups; (ii) a disproportion between the detailed energy-technology modeling
part and the aggregated macroeconomic part; (iii) investments are not modeled
in a so called vintage-like manner, but are free to be de-invested in later periods;
(iv) the determination of the GDP su�ers from not di�erencing input cost and
added value in the energy sector.
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Appendix D

Proof of Existence of an
Equilibrium for MMmr

The existence of an equilibrium solution to MMmr will be given using the path-
following approach described in Section 2.3. The other two possibilities discussed
in Section 2.2 and Appendix B can not be directly applied for the following rea-
sons. On the one hand the Negishi-concept requires Assumptions 1.1 and 2.1 to
hold which can not be easily veri�ed in case of MMmr, even though Section 1.2
relates the structure in De�nition 1.4 to the formulation of MMmr. On the other
hand, the VIP-based approach from Appendix B requires closedness of the so
called interacting set I (Theorem B.5) which can be achieved by openness of the
feasible set map K (Lemma B.7 and B.8). On the background of the related dis-
cussion in Flippo [30] one can not expect to easily verify this openness for general
agents like the ones in MMmr, cf. the example page 111 depicted in Figure B.2.

Contributions of this chapter include the adapted application of the general path-
following concept to MMmr for proving the existence of an economic equilibrium.

The proof of existence based on path-following relies on Theorem 2.8 and requires
Assumption 2.2 to hold which will be checked in the sequel. To start with, the
notation in Chapter 7 is related to the formalism in Section 2.3. The set of agents
A is replaced by R + 1 where R denotes the set of regions and is augmented by
the price agent (2.3). The MMmr{variables of one region r are caught in

p price vector,

xr traded goods (num�eraire and permits),

yr residual Macro-variables not appearing in Markal

(Ct, It, Kt, ECt, Lt, D:::, XCAPt), and

zr all Markal variables;

they are further put together following (2.9):
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vr = (xr; yr; zr),

v�r = (v1; : : : ; vr�1; vr+1; : : : ; vR; p), and

v = (v1; : : : ; vR; p) = (vr; v�r).

So each region has its own variable vr, which it controls, and the other variable
v�r it has to accept exogenously. The special case p is subsumed into vR+1.

Concerning the constraints, the equality part of the linear model Markal plus
the linear equations of Macro is represented by hr, whereas the inequality part
can be represented by a part of the concave function gr. All nonlinear equality-
constraints in Macro can be written as inequalities based on the speci�c economic
meaning. Thus every regional problem of MMmr can be expressed in the form of
problem (2.9). The remaining price agent R + 1 is obviously a simple linear
programming problem and poses no di�culties. Now the formal foundation is
ready for checking conditions (a){(d) of Assumption 2.2.

Concerning condition (a) concavity of the objective follows from concavity of the
log function plus the fact that the positively weighted sum of concave functions
remains concave.

As for condition (b) the linear part is acceptable; there are two nonlinear relations

left, which could destroy convexity: the production function Yt = [aK��
t L

�(1��)
t +

�dbd D
�
d;t]

1=�, and the quadratic constraint concerning investment
P

j costj;tXj +P
� c�XCAP

2
�;t = ECt: In both cases `=' must logically be replaced by `�'; the

quadratic investment constraint is convex, thus only concavity of the production
function is required. To that end the production function is broken into a Cobb-
Douglas function

f1(K;L) := cK�L(1��)

and a CES{function

f2(A;D) := (a1A
� + a2D

�)1=�:

The term A is the aggregate of capital and labour formed by f1. If both functions
are concave and if f2 is monotone in A, that is in f1, then the nested function
f(K;L;D) := f2(f1(K;L); D) is concave:

�f(K0; L0; D0) + (1� �)f(K1; L1; D1)

= �f2(f1(K
0; L0); D0) + (1� �)f2(f1(K1; L1); D1)

� f2(�f1(K
0; L0) + (1� �)f1(K1; L1); �D0 + (1� �)D1)

� f2(f1(�K
0 + (1� �)K1; �L0 + (1� �)L1); �D0 + (1� �)D1)

= f(�K0 + (1� �)K1; �L0 + (1� �)L1; �D0 + (1� �)D1):

The monotonicity mentioned is given if � > 0. Furthermore non-negativity of
all variables has to be assumed. So the problem of concavity of the production
function is reduced to show concavity for each of those two functions. This is
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performed by computing the eigenvalues of the Hessian of both, resulting for f1
in �1 = 0 and

�2 = c
1

LK2
�

�
K

L

��

(�� 1)(L2 +K2):

In MMmr K and L are always positive as well as c, and economic theory demands
� � 0. Therefore the sign of �2 equals the sign of � � 1. That is, under the
given assumptions f1 is concave in K and L if � 2 [0; 1]. The eigenvalues of the
Hessian of f2 are �2 = 0 and

�1 =
a1a2(a1A

� + a2D
�)1=�(AD)�(�� 1)(A2 +D2)

A2D2(a21A
2� + 2a1a2(AD)� + a22D

2�)
:

Also in this case A and D can be assumed positive as well as the constants a1
and a2. Hence the sign of �1 coincides with the sign of ��1, that is f2 is concave
in A and D if � 2 (0; 1]. In the sequel it is assumed that � 2 [0; 1] and � 2 (0; 1],
and so condition (b) in Assumption 2.2 is satis�ed.

Condition (c) in Assumption 2.2 is trivial.

Before checking condition (d) some comments are required. A careful look at the
proof of Theorem 2.8 reveals that (d) is needed exactly for two reasons: (i) as a
constraint quali�cation (CQ) in order to guarantee the existence of KKT-points,
and (ii) to make the primal and dual solution of (2.10) unique. The second
property is required to inhibit the path from turning back. As mentioned in
the comments following Theorem 2.8 both can be achieved by requiring v0 to be
any feasible point (not necessarily interior) together with the well known linear
independence of the (binding) gradients as CQ (see Appendix A). We assume
therefore all regional MM-models to be feasible under the additional constraint

Emr;t � IECO2 r;t 8r 2 R: (D.1)

In the sequel we denote by D the global feasible set

D := fvjgr(v) � 0; hr(v) = 0; r = 1; : : : ; R + 1g;
and restrict ourselves to verifying the linear independence of the gradient vectors,
cf. Theorem A.1.

(CQ) System (2.9) ful�lls that the gradients with respect to vr of all components
of gr and hr are linear independent for each r and any v 2 D.

The proof will be given step by step.

The whole linear part, consisting of the complete MARKAL-part and parts of
Macro, can be assumed linear independent by means of elimination. The overall
linear independence follows then if the gradients of all Macro relations localized on
the set of pure Macro variables are linear independent. For the ease of exposition
the Macro-relations are reproduced here while dropping the regional index r; note
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that (PRDt) and (USEt) are not present in the Macro-constraints because they
are directly substituted into the objective.

L0 = 1; (D.2)

Lt = (1 + grow)10 Lt�1; (D.3)

0 �
X
t2T

(p0;tx0;t + p1;tx1;t); (D.4)

K0 = c; (D.5)

I0 = (grow + k)K0; (D.6)

Kt = (1� k)10Kt�1 + 5((1� k)10It�1 + It); (D.7)

IT � KT (grow + k); (D.8)X
j
supplyj;d;tXj;t = aeeifacd;tDd;t; (D.9)

ECt �
X

j
costj;tXj;t + c

X
�
c�XCAP

2
�;t; (D.10)

CAP�;t � expf CAP�;t�1 +XCAP�;t; (D.11)

Emt � x01;t � x1;t: (D.12)

The gradients of those relations, restricted to pure Macro variables only, are ana-
lyzed in the following tables. The basic idea is to group the constraints according
to the variables they contain, and such that those variables do not appear in the
other groups; if the constraints have linear independent gradients with respect
to these group variables, the overall set of gradients is linear independent. Note
that some constraints appear only once ((D.2), (D.4), (D.5), (D.6) and (D.8)),
while the others are repeated for t 2 T . To have nice checkable tables we assume,
without loss of generality, jT j = 3.

Group 1 contains the constraints (D.2) and (D.3) where Lt is the group vari-
able. We then have the following table of gradients obviously implying linear
independence of the set of corresponding gradients:

L0 L1 L2 LT

r(D:2) 1

r(D:3)t=1 1 + grow �1

r(D:3)t=2 1 + grow �1

r(D:3)t=T 1 + grow �1

Group 2 contains the constraints (D.4) and (D.12) with the group variables x.
The corresponding table of gradients is:
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x0;1 x0;2 x0;T x1;1 x1;2 x1;T

r(D:4) p0;1 p0;2 p0;T p1;1 p1;2 p1;T
r(D:12)t=1 �1

r(D:12)t=2 �1

r(D:12)t=T �1

Combining any column with positive p0;t from the �rst half of the array with
the second half yields a non-singular matrix and thus the set of corresponding
gradients is linear independent. The third group comprises (D.5), (D.6), (D.7)
and (D.8), where K and I are the exclusive variables. The table of gradients is:

K0 K1 K2 KT I0 I1 I2 IT

r(D:5) 1

r(D:6) grow+k �1

r(D:7)t=1 (1�k)10 �1 5(1�k)10 5

r(D:7)t=2 (1�k)10 �1 5(1�k)10 5

r(D:7)t=3 (1�k)10 �1 5(1�k)10 5

r(D:8) grow+ k �1

To see that the following subset of columns forms a non-singular matrix one
has to recall the rule for calculating determinants of block-diagonal matrices,
det(A�

0
B
) = det(A) det(B).

K0 I0 I1 I2 IT KT

r(D:5) 1

r(D:6) grow+ k �1

r(D:7)t=1 (1� k)10 5(1� k)10 5

r(D:7)t=2 5(1� k)10 5

r(D:7)t=3 5(1� k)10 5 �1

r(D:8) �1 grow+ k

We conclude that the gradients in group 3 are also linear independent with respect
to K and I given 5(grow + k) 6= 1. To see linear independence of the gradients
with respect to the other constraints note that D::: appears only in (D.9), ECt

appears only in (D.10), and CAP::: appears only in (D.11).

We have proven now (CQ) under two conditions: (i) there is a positive num�eraire
price component p0;t > 0, and (ii) 5(grow + k) 6= 1. Condition (ii) is merely
technical and easy to ful�ll. Condition (i) is very reasonable, because already a
single zero-valued num�eraire price component implies an unbounded objective in
problem (7.1). Without loss of generality we assume therefore that the feasible
set of the price agent is altered by requiring p0 � " for some " > 0 instead of
requiring p0 � 0.
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Besides Assumption 2.2 Theorem 2.8 requires compactness of the global feasible
set D. From the economical-technological background it is always possible to
derive lower and upper bounds on all quantities and we can assume therefore
compactness of D without loss of generality.

Having veri�ed all requirements of Theorem 2.8 the following corollary is the
ultimate answer to the question of existence of an equilibrium to MMmr:

Corollary D.1 There exists an equilibrium solution of the model MMmr if the
following conditions are satis�ed: all regional MM-models (C.5) are feasible under
the additional emission constraint (D.1), D is compact, 5(grow + k) 6= 1, � 2
(0; 1], � 2 [0; 1], and K0 > 0.



Appendix E

Implementation of Both
Algorithms

In this chapter we describe the implementation of the VIP-algorithms (Algo-
rithm 2 and 4) and the [�; t]-Negishi-algorithms (cf. Algorithm 5). The program-
codes are freely available from the author ([bueeler, root]@ifor.math.ethz.ch).

Two aspects were considered most important in the implementation of both the
VIP- and the Negishi-approach: (i) leave the regional gams-models as far as
possible unchanged, and (ii), solve the regional models in a transparent parallel
way. The �rst point carries over to an overall `lazy' implementation where the
major work is done by existing programs or solvers; the second point allowed both
the VIP- and the Negishi-algorithm to run in a number of di�erent settings: on
a single processor machine, on two or three single processor machines which were
geographically distributed solving one or two regional models each, and �nally
on a multiprocessor machine. Operating systems include hp-ux and aix which
are unix derivatives of Hewlett Packard and IBM respectively. The main work to
integrate additional machines is the installation of gams and the Markal-Macro
model, whereas the changes in the equilibrium code are comparatively simple.

Contributions of this chapter include the overall coding and the implementation
of parallel solving techniques for both the VIP- and Negishi-algorithm.

E.1 VIP-Based Cutting Plane Methods (CPM)

The cutting plane methods for solving VIPs can be applied either directly in the
original space � � IR2jT j (Algorithm 2), or indirectly in an extended homogenized
space (Algorithm 4). While Algorithm 2 from page 23 was implemented and
tested with a variety of centers, Algorithm 4 from page 38 was used with the
analytic center only. In both cases the overall algorithmic structure is identical,
see Figure E.1. The heart of the algorithm is a small program written in C
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(`main') which alternates between calling the appropriate center computing unit
(`centers:') and the excess computing unit (`MM (7.1)' standing for Markal-Macro
regions of the form (7.1)).

region1.dat

region2.dat

region3.dat

MM
(7.1)

regional
excess

p

main

centers:

analytic center

center of gravity
: : : : : : : : :

overall
excess

p

gams

minos
other

solvers

gams

minos

Figure E.1: Scheme of cutting plane methods.

This main routine coordinates furthermore the communication using �les and
accounts for starting and stopping speci�cities. The actual work to compute the
excess and the (analytic) center is done by the solver minos through appropriate
gams problems (boxes at the bottom of Figure E.1). Parallel execution of the re-
gional problems (left part) is implemented in `main' using fork()1 in connection
with execl() to generate a process for each regional problem and waitpid() to
coordinate termination. In case of di�erent (geographically distributed) comput-
ers rcp (remote copy) maintains communication and rsh (remote shell) cares for
the execution of the regional models on remote machines.

To speed up the solution process the feasibility set � is further restricted to
some �0 � � before starting. In case of Algorithm 2 an inner point x0 2 �0

can be chosen freely as starting point; in contrast to this the starting point of
Algorithm 4 is determined by �0 and represents essentially its analytic center,
cf. Section 3.2.2.

Stopping criterions for both algorithms are either the number of iterations or
ke(p)k � " for some chosen " > 0. If Algorithm 2 stops due to exhausting the
number of iterations, the iterate with minimal ke(p)k is returned. The criterion
ke(p)k is chosen, and not say jpT e(p)j (typical for complementarity problems) or
the dual gap function gD (typical for variational inequality problems), because the
former depends on the arbitrary scaling of prices, and the latter is not computable.
Furthermore, e(p) has a direct economic interpretation which|due to e(p�) = 0 in
all our equilibria|is well re
ected by ke(p)k, making it an attractive measure for
the quality of approximate solutions. In the sequel questions on how to compute
centers are brie
y touched.

1This and all subsequent verbatim terms are unix system-functions or shell commands; all
of them are standard avoiding portability problems.
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Computing the Analytic Center

There is a rich literature on how to compute the analytic center, cf. for example
[86, 2, 39]. The problem is especially `good-natured' and can be solved very e�-
ciently if an inner starting point is given, see Nesterov [86, Theorem 2.2.3]. These
theoretical �ndings are also strongly supported by computational experiences.
Our goal was, however, to program as little as possible and to use existing solvers
to do the work.2 Because the CPU-time required for computing the analytic cen-
ter is much below 1% of the overall CPU-time, the following brute force method
was used. Given in iteration k the feasibility set �k = fp jAkp � ak; Bkp � bkg,
the center of a maximal inscribed sphere, which is a solution pc of the following
LP,

max �

s.t. �e � ak � Akp;

Bkp � bk;

is computed. Here e denotes the vector of all 1's in the appropriate dimen-
sion. The constraints Bkp � bk are used for several purposes, e.g. to keep p on
the a�ne hyperplane

P
i pi = 1, or to impose various proportionality relations,

cf. the discussion about free and 
oating permits in Section 7.1.2. They share
the common property that they should not be included in the barrier, either be-
cause they represent a hyperplane or to allow the center ful�lling the constraints
tight. Starting at pc, the solver minos is then used to determine the maximum
of
P

i log(s
k
i ), where s

k = ak � Akx and the inequality Bkx � bk is obeyed,
cf. De�nition 3.3. To make this scheme work down to tiny �k (the diameter
should decrease to zero), an appropriate scaling is of crucial importance. Note
that the analytic center is invariant with respect to x if ak � Akx is replaced
by (ak � Akx) � diag(f), where f is a vector of scaling factors and diag(f) the
related matrix of diagonal elements. It is therefore easy to keep the feasibility
set su�ciently large by using an appropriate scaling vector f .

In case of the homogeneous ACCPM there is no bounded polytope, instead the
analytic center is de�ned as minimum of the proximal barrier Fk de�ned in Al-
gorithm 4 page 38. Hence the center of a maximal inscribed sphere can no more
be computed; a reasonably good starting point is nevertheless available by im-
plicitly �xing t = 1, i.e. by simply ignoring the conic structure and treating the
start-problem in the original space as described above. The result turned out to
be a very satisfying starting point for minos to derive the analytic center of the
conic barrier.

2In fact, in the mean time very robust and e�cient codes for computing the an-
alytic center were developed. One is due to a group in Geneva, see http://ecolu-
info.unige.ch/�logilab/software/accpm.html.
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Computing the Center of Gravity

Computing the center of gravity (cog) is closely related to volume computation as
can be seen from its de�nition, cog =

R
P
xdx=

R
P
dx: Here P denotes the appro-

priate bounded convex polytope under consideration in iteration k of Algorithm 2.
It is know that exact, deterministic volume computation based on a hyperplane-
representation, Ax � b, can not be done in polynomial time, and furthermore,
given any representation, volume computation is #P-hard, cf. Gritzmann and
Klee [44].

The simple idea we implemented to compute the cog is to triangulate P into a
set of simplices, compute the cog of each simplex and build the volume-weighted
average over all simplicial cog's. There are a number of di�erent triangulation-
possibilities described in the literature. An analysis of some of these concepts
together with numerical tests can be found in [10].

Despite the fact that the cog is hard to compute, and as a matter of fact could not
compete with the analytic center in our examples, a cutting plane algorithm using
the cog has two attractive aspects. On the one hand it is `optimal' if algorithms
are ranked according to the criterion `worst rate of convergence (independently
of f) in the case of many variables', where only �rst order information from an
oracle can be used, see [83, p. 551]. On the other hand it is optimal if the e�ort
for evaluating the oracle grows su�ciently large.

In the last ten years, however, hope arose that the situation can be signi�cantly
improved. The basis is an interesting randomized approximation-scheme for vol-
ume computation, see Gritzmann and Klee [44] with the references therein, and
speci�cally Kannan, Lov�asz, Mikl�os and Simonovits [60]. Whereas an exact and
deterministic computation of the volume of a polytope is hard, and also the ap-
proximate deterministic computation is hard, the situation changes drastically
if randomized approximation algorithms are considered. Choose � 2 (0; 1) and
" > 0, then the randomized volume approximation �r(P ) is de�ned as follows.

Prob

����� �r(P )vol(P )
� 1

���� � "

�
� 1� �:

Based on random walks which are analyzed by rapidly mixing Markov chains a
polynomial randomized volume approximation scheme is described in Kannan,
Lov�asz and Simonovits [60], where the complexity is bounded by

O

 
d5

"2

�
log

1

"

�3

log
1

�
log5d

!
:

In case of Algorithm 2 a randomized scheme where some of the approximate
cogs are in fact outside the feasibility set is no problem, because the hyperplane-
representation is always available, and so points which are not `su�ciently' inte-
rior can simply be rejected. Thus, a valid CPM can be set up where all iterates
are in the interior of P and represent most of the time the cog su�ciently well.
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A Quadratic Cut Method

Convergence of Algorithm 2 can be improved if higher order information is ad-
ditionally used. As an example consider a strongly monotone operator f , i.e. we
observe for an � > 0 and for all x; y in the polyhedral feasibility set D the re-
lation (f(y)� f(x))T (y � x) � �ky � xk2. In such a case the quadratic cut set
Cq
xk

:= fx 2 D j � f(xk)T (x � xk) � �kxk � xk2 � 0g contains the solution of
VIP(f;D) for any xk 2 D. That is, for strongly monotone operators we can re-
duce the feasibility set Dk in step (iii) of Algorithm 2 further by using Cq

xk
instead

of Cxk . If more precise second order information is available, Cq
xk

can be de�ned
more generally Cq

xk
:= fx 2 D j � f(xk)T (x � xk) � (xk � x)THk(xk � x) � 0g,

where Hk is a suitable positive semi-de�nite matrix.

If higher order information is not available with full certainty one can nevertheless
improve Algorithm 2 in the following way. Compute in iteration k the analytic
center xk+1 of Dk\Cq

xk
, where Hk is chosen according to the underlying problem.

Then update the feasibility set without the quadratic term, i.e. set Dk+1 := Dk \
fx 2 D j f(xk)T (xk � x) � 0g. That is, the uncertain quadratic information
at xk is only used to position xk+1, but it does not reduce the feasibility set
Dk+1. This procedure can therefore be used whenever f is pseudo-monotone
and a reasonable hypothesis about rf is at hand. Two ways to approximate
rf are the well known rank one update scheme and the Davidson-Fletcher-
Powell method, cf. Fletcher [29]. This `use-and-forget'-quadratic cut method is
discussed in depth in Denault [19], where also its application to a variety of
problems, including MMmr, is presented. Empirically it improved convergence
signi�cantly in many instances. It's theoretical properties, however, are not yet
fully understood.

E.2 Negishi-Based Methods

Two algorithms are discussed in this section: the �-Negishi-algorithm which ex-
ploits the relation �r = 1=�r (see Theorem 2.5) and which is also the default
Negishi-algorithm throughout this work. And secondly an alternative updating
scheme called t-Negishi-algorithm (t âtonnement) is studied.

E.2.1 The �-Negishi-Algorithm

The implementation of the �-Negishi-algorithm (Algorithm 5 page 48) is depicted
in Figure E.2. The large gray shaded box contains its main component, the
ACCPM-decomposition machinery from Algorithm 6 page 58 to solve the Negishi-
welfare problem (4.1). The input to this welfare problem is the Negishi-weight
�, the ultimate output are the dual multipliers of the common excess constraint
e � 0 which are called `dual price' throughout the �gure (see also Figure 4.1
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Negishi

main

�
(Budget-excess)
dual price

MM
(7.10)

regional

objective

& excess

dual price

�

accpm

main

lower
bound

lowerbound

objective
& excess

analytic
centerdual price

other

solvers

gams

minos
gams

cplex

gams

minos

MM
(7.1)

region1.dat

region2.dat

region3.dat

�

dual price

Figure E.2: The �-Negishi-algorithm using decomposition.

page 46). This (dual) price p is then used in `Negishi main' to compute the dual
multipliers � of the budget constraint (top left). Note that there are two slightly
di�erent regional MM-models present in the Negishi algorithm, but which use the
same data-set `region?.dat'. The MM-model (7.10) on the one hand contains a
penalty term in the objective based on the excess, but has no budget constraint.
MM-model (7.1) on the other hand has the original objective together with a
budget constraint. The inverse of the dual multiplier � of this budget constraint
is, after inverting and normalizing, taken as new approximation of the Negishi
weight.

The following remarks are in order:

� To start the �-Negishi-algorithm one can either choose a �rst Negishi weight
�0 which is then used in the decomposition machinery; or a �rst (dual) price
is chosen and �0 retrieved by solving (7.1), which in turn yields a �rst �0.
The second strategy is signi�cantly superior because solving (7.1) is much
cheaper than solving the Negishi welfare problem (gray shaded box), and at
the same time the resulting �0 comes already very close to the true solution
of the equilibrium problem even if the price signal is rather far away from
the equilibrium price.

� This `robustness' mentioned in the previous item was observed in fact in
both directions, and on the whole feasible set of p and � respectively.
Taking any p 2 int� and solving (7.1) yields � which|taken inverse and
normalized|is close to an equilibrium weight ��. And conversely: Choos-
ing an arbitrary feasible � and solving (7.9) yields dual multipliers of the
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excess constraints which are close to an equilibrium price p�. Mathemat-
ically spoken one such Negishi-iteration represents a contraction mapping
(cf. Section A.4.1) with a small contraction constant around 0.01 in our
examples. This remarkable behavior deserves future attention and is the
basement of successfully solving equilibrium problems using the Negishi-
approach.

� In the decomposition-machinery the overall performance can greatly be
in
uenced by choosing an appropriate small box around the solution. Ad-
ditionally it turned out that choosing the starting point p0 too close to the
true solution slows down the decomposition because the related �rst cut
pushes away subsequent iterates.

� The Negishi welfare-problem is very sensitive to minor changes of the weights
�. This sensitivity makes numerical `rounding' e�ects in the decomposition
machinery a major reason for limited convergence of the overall �-Negishi-
algorithm. The regional problems with the dual multipliers are only solved
approximately by the solver minos, yielding approximate sets of localiza-
tion. In the implementation the decomposition code returns the dual price
once a minimal duality gap is reached. Due to the numerical di�culties the
minimal absolute duality gap can not be lowered below 10�6 (correspond-
ing to a relative duality gap of 10�9), which in turn limits the attainable
accuracy in the overall �-Negishi-algorithm.

� To further speed up the algorithm, the duality gap limit in the stopping cri-
terion of the decomposition machinery is dynamically reduced. In the �rst
Negishi-iteration the decomposition is carried out rather approximately,
whereas in the following Negishi-iterations the decomposition is performed
increasingly accurate.

� Looking closer at the excess and the dual price in the last few iterations of
the decomposition algorithm reveals a surprisingly large `jumping around'.
The main strategy used in the decomposition machinery is to return the
quantities of the last iteration where a value-cut was performed. Another
successful strategy takes the average over the last few iterations of those
quantities.

E.2.2 The t-Negishi-Algorithm

This algorithm can also be visualized by Figure E.2, if the top left box (MM
(7.1)) together with the related arrows is dropped. The basic idea to estimate
�, the dual multipliers of the budget constraint in (7.1), is taken from the model
5R, cf. Manne and Rutherford [75]. In case of MMmr, the derivation is based on
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(7.5):

�r � �ar :=
br;t

pNTX ;t(Cr;t � NTX r;t)
(E.1)

at an arbitrarily chosen time period (cf. the discussion on page 79); here `�'
means `approximately modulo scaling'. Because the same equilibrium solution is
obtained in the VIP- and the Negishi-approach, the quantities from the solution
of the Negishi welfare problem can be used to compute such an approximate �ar .
The updating scheme of the Negishi weights uses then the inverse of �ar and adds a
scaled amount of the budget excess following the tâtonnement concept described
page 47. Empirically we found that the numerical behavior depends crucially on
the scaling of the budget excess added, motivating a closer look at the underlying
quantities.

Amazingly enough, we observed in the full
edged MMmr-model that in every
iteration k the relation

�kr �
1

�akr
P

r(1=�
ak
r )

holds with an accuracy of more than 10 digits. Here the quantities in (E.1), which
de�ne �akr , are taken from the solution of (7.10) at �kr . That is, �

ak
r derived from

the solution of (7.10) at �kr does not estimate �r of (7.1), but is|taken inverse
and normalized|simply �kr again.

To analyze this phenomenon the machinery of Section 7.1.2 is used, applying it
to the following simpli�ed Negishi welfare problem:

max
X
r2R

�r
X
t2T

br;t log(Cr;t � NTX r;t)

s.t.
X
r2R

NTX r;t = 0 8 t 2 T:

Using pNTX ;t as Lagrange multiplier the corresponding Lagrange function reads

L(Cr;t;NTX r;t; pNTX ;t) =
X
r2R

�r
X
t2T

br;t log(Cr;t � NTX r;t)

+
X
t2T

pNTX ;t

X
r2R

NTX r;t:

The �rst order optimality condition @L=@NTX r;t = 0 yields

�r =
pNTX ;t(Cr;t � NTX r;t)

br;t
: (E.2)

Due to the non-arbitrage argument this is independent of t. Comparing the
inverse of (E.1) with (E.2) we �nd coincidence explaining why the ostensible
guess for the new Negishi weight, 1=�ar , returns in fact simply the old Negishi
weight.
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The update of the Negishi weight � from iteration k to k+ 1 can thus be under-
stood as t âtonnement process (therefore t-Negishi-algorithm), and be described
as follows. Let bekr = pT er be the budget excess of region r in iteration k, where
p is the dual multiplier of the common excess constraint, set bek =

P
r jbekr j+ 1,

and let redfac > 0 be an appropriate reduction factor. Then the update scheme
(step (iii) in Algorithm 1) proceeds as follows.

�0k+1
r = maxf0; �kr + redfack � bekr=bekg; (E.3)

�00k+1
r = �0k+1

r =
X
r

�0k+1
r ; (E.4)

�k+1
r = � � �kr + (1� �) � �00k+1

r : (E.5)

In (E.3) the basic updating step is performed which consists of adding the budget
excess to the old weight. Then the weights are normalized again (E.4) and �nally
in (E.5) they are smoothed with the former weight, where � 2 [0; 1] is chosen
appropriately. In the original scheme used by Manne and Rutherford (E.5) was
not present, i.e. � was set to 0. The reduction factor redfac is reduced in each
iteration. A good starting value together with a suitable reduction are of critical
importance to come su�ciently close to a solution and to overcome the non-
contractive nature of the map. This heuristic has to be adjusted for each problem.

In the solution process of 5R the scaling factor redfac was implicitly �xed by
replacing (E.3) with (F.1).

E.3 Adaptions Needed in the Regional MM-

Models

First the common changes from (C.5) to (7.1) and (7.10) are described, secondly
the speci�c changes are reported. Note that no explicit regional index r is in-
troduced in the gams-code of the regional models. Common changes comprise
the introduction of the parameter IECO2 (initial endowment with CO2 emis-
sion permits), the variables NTXCO2 (net exchange of permits) and NTX (net
exchange of num�eraire), and the equation EMC (CO2 emission constraint). To
adapt the regional models to the same monetary and emission units, the scalars
CO2EMFAC (regional emission units per megatons CO2) and LCU FACT (US$
per regional monetary unit) are further de�ned. Based thereupon the following
common changes are made to (C.5): (i) replace log(Ct) by

log(LCU FACT � (Ct � NTX t));

and (ii) bound the emissions by

EM (TP ;0 CO2 0)=CO2EMFAC � CCO2 (TP):
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In (ii) it is in the case of the Negishi-algorithm important to put the CO2EMFAC
on the left side of the inequality, otherwise incompatible dual multipliers are
produced and the decomposition machinery does not work.

Speci�c for (7.1), additional price parameters pNTX and pNTXCO2 and the budget
constraint are declared.

As for (7.10) speci�c declarations comprise the dual price parameters pNTX and
pNTXCO2 , and the Negishi weight �r. Finally, the objective is extended to

�r

�X
t

log(LCU FACT �(Ct�NTXt))

�
+
X
t

pNTX ;tNTXt+
X
t

pNTXCO2 ;tNTXCO2 t:



Appendix F

Numerical Comparison of the
Algorithms

This chapter presents numerical comparisons among pairs of algorithms; speci�-
cally neither economic results are reported, nor are the data the same throughout
all comparisons. Only within a comparison the underlying data are kept iden-
tical. Reasons are the di�erent numerical requirements of the algorithms, the
evolution of the data-situation in time, and technical convenience. To begin with,
in Section F.1 (pseudo-)monotonicity is tested using a very simpli�ed (nonlinear)
MMmr-model. Next, concerning Algorithm 2 the analytic center is compared with
the center of gravity cutting plane method in Section F.2. Then in Section F.3
the classic non-conic ACCPM versus the new conic ACCPM (Algorithm 4) is
investigated. The �-Negishi-algorithm vis-�a-vis the ACCPM is presented in Sec-
tion F.4. Finally, the �-Negishi-algorithm (Algorithm 5) is compared with the
t-Negishi-algorithm.

As a general remark, all algorithms found the same equilibrium solution, whereas|
due to the algorithmic speci�cities|the accuracy can di�er. To obtain the true
permit prices in US$/ton CO2, the price components related to CO2 permits must
be divided by the components of the num�eraire NTX and multiplied by 1000 to
account for internal scaling. Because all algorithms work in the full price space,
some algorithmic comparisons will be made presenting untransformed prices.

F.1 Almost Pseudo-Monotonicity of the Excess

in a Simpli�ed Model

The following, very simpli�ed MMmr-model was set up, and the resulting over-
all excess examined. There are three regions r1; r2; r3 2 R, three time periods
t1; t2; t3 2 T , and three energy demand forms w; n; f 2 D standing for water,
nuclear and fossil respectively. The arguments in the following presentation of
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the variables or data structures are the index set over which the corresponding
quantities are de�ned. The variables in the model are

TDC (R) total discounted consumption,
C(R; T ) consumption,
X(R; T ) consumption of CO2 emission certi�cates,
P0 (T ) price for X(.,T),
P1 (T ) price for NTX(.,T),
Em(R; T ) emission of CO2,
EC (R; T ) energy cost,
E(R; T;D) energy demand (consumption),
NTX (R; T ) net exchange of (abstract) products,
NTXCO2 (R; T ) net exchange of CO2-emission-certi�cates.

The variables C;X;Em;EC and E are nonnegative. The data are as follows:

� discount rate in objective = :2,

� elasticity in CES-production function = :6,

EC0 (R) base energy cost = (2; 1:2; 1),

EEC (D) energy emission coe�cient in emission function = (:01; :02; 1),

X0 (R; T ) emission certi�cate endowment:

t1 t2 t3

r1 150 60 60

r2 25 15 10

r3 510 250 120

EPC (R;D) energy production coe�cient in production function:

w n f

r1 50 38 90

r2 50 38 95

r3 50 38 110

ECC (R;D) energy cost coe�cient in energy cost function:

w n f

r1 5 25 9

r2 3 15 7

r3 9 15 7

The model consists of the following equations for each region r 2 R:

OBJ objective,
BCon budget constraint,
USE(T ) usage constraint,
NTXCO2Def(T ) de�ning constraint for NTXCO2 ,
ECCon(T ) energy cost constraint,
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EMCon(T ) emission constraint,
EMB(T ) emission budget,
MFEW(T ) minimal fossil energy for producing `water' energy,
MFEN(T ) minimal fossil energy for producing `nuclear' energy,
EUB(T;D) energy consumption growth upper bound,
ELB(T;D) energy consumption growth lower bound.

They are de�ned as follows:

TDC =
X
t2T

(1 + �)�t logCt; (OBJ)

0 �
X
t

P1 tNTX t + P0 tNTXCO2 t; (BCon)

NTXCO2 t � X0 t �Xt; (NTXCO2Def)

Ct � 0:0005

"X
d2D

EPC dE
�
t;d

#1=�
� EC t � NTX t; (USE)

EC t = EC0 +
X
d2D

ECC dEt;d; (ECCon)

Emt � Xt; (EMCon)

Emt =
X
d2D

EECdEt;d; (EMB)

Et+1;d � 1:3 � Et;d; (EUB)

Et;d � 0:5 � Et�1;d; (ELB)

Et;`w' � 100 � Et;`f '; (MFEW)

Et;`n' � 10 � Et;`f ': (MFEN)

CO2 emissions are free in the �rst period and hence p01 = 0 is �xed, leaving 5
tradable goods. Furthermore, instead of requiring p � 0 together with

P
i pi = 1

(i.e. p 2 �), each of the 5 price-components is logarithmically distributed from
0.0001 to 10, giving raise to 6745 valid and di�erent price-vectors, for which
the solver minos could compute the excess. Though the excess e(p) is invariant
under price-scaling, the monotonicity-product (p � p0)T (e(p) � e(p0)) depends
on the scaling of the prices, requiring a rescaling of the prices onto �. We
found about 5% of the price pairs where monotonicity is violated (560926 out
of 22744140). The maximal monotonous product was 59998, the minimal �787,
hence the extend of violation of monotonicity is around 1:3%.

Then pseudo-monotonicity was tested, that is, we checked whether e(p)T (p0�p) �
0 implies e(p0)T (p0 � p) � 0. The �rst relation, e(p)T (p0 � p) � 0, was given for
4:6 � 106 price pairs, and only in case of 18 pairs we then had e(p0)T (p0 � p) < 0,
i.e. pseudo-monotonicity was violated only extremely rarely. Looking to what
extend it was violated, the product e(p0)T (p0 � p) attained at least �0:14 and
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at most 25,000 among the pairs where e(p)T (p0 � p) � 0 holds. Hence pseudo-
monotonicity is practically ful�lled. On top of that the equilibrium price p� was
never cut away by any of the above prices, i.e. the minimum of e(p)T (p�p�) over
all prices p on the grid is positive.

The full
edged MMmr-model can not be tested in such a way, because the numer-
ical e�ort exceeds todays computer-capacities. Nevertheless, the numerous runs
of MMmr using ACCPM cut away the solution only rarely, and if so it happened
already close to an equilibrium price. That is, only if ke(p)k is small, ACCPM
sometimes cut away p�. This indicates also non-pseudo-monotonicity of e(p) in
case of MMmr.

F.2 Analytic Center versus Center of Gravity

CPM

In the previous section both the data and the model were very simpli�ed com-
pared to the full
edged MMmr. In this section, the full gams code for the regions
is used, but the data-set is simpli�ed to shrink the size of the resulting regional
problems to about 10% of its original value. At the same time the number of time
periods is increased to 5, where, as before, trade of permits in the �rst period is
omitted in order to have the starting period under control.

The �rst four components in the price-vector (P0 in the Tables F.2 and F.3) relate
to the CO2 permits of the periods t2; : : : ; t5, the �nal 5 price-components (P1)
correspond to the num�eraire good of the periods t1; : : : ; t5. Hence the number of
traded goods is 4 + 5 = 9.

There are three di�erent regions in this example; region 1 has simpli�ed energy
data from Switzerland, region 2 is about �ve times larger than region 1 and
electricity generation from nuclear power is cheaper, and �nally region 3 is about
10 times larger than region 1 with cheaper fossil fuels. The di�erences in the data
are shown in Table F.1. In the cases where values are given for 1990 and 2030
only, the values for the intermediate periods are linearly interpolated.

In the Tables F.2 and F.3 `absolute vol.' is the volume of the feasibility set
in 8 dimensions, `v. red.' is the volume reduction from the current cut, and
`|excess|' is ke(p)k. Comparing those two tables the following remarks are in
order.

� Both cutting plane methods produce the same approximate solution while
the iterates can di�er considerably.
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Region 1 Region 2 Region 3

EC0 (initial energy cost) 13.5 67.44 144.2

GDP0 (initial GDP) 300 1500 3000

IECO2.1990 (certi�cates endowment) 28 90 270

IECO2.2000 30 105 300

IECO2.2010 35 120 350

IECO2.2020 40 130 400

IECO2.2030 40 140 450

DDAT.RH.PREF (reference price for residential heating) 30.68 37.43 41.86

DM_DEMAND.RH.1990 (Maximal demand for residential heat) 100 500 1000

DM_DEMAND.RH.2030 (Maximal demand for residential heat) 185 925 1850

DM_DEMAND.TX.1990 (Maximal demand for transportation) 50 250 500

DM_DEMAND.TX.2030 (Maximal demand for transportation) 105 500 1050

SEP_COST1.IMP.HCO.1.1990*2030 (import price for hard coal) 5 5 3

SEP_COST1.IMP.OIL.1.1990*2030 ( : : : oil) 8 8 5

SEP_COST1.IMP.URN.1.1990*2030 ( : : : uranium) 1 0.8 1

TCH_FIXOM.E21.1990*2030 (�x cost of LWR) 500 200 500

TCH_INVCOS.E21.1990*2030 (investment cost of LWR) 5000 3000 5000

Table F.1: Di�erences in the regions of Utopia.

� The overall volume reduction coe�cient is in case of the analytic center
0.52, in case of the center of gravity, slightly better, 0.49. But whereas
the volume reduction factor in case of the center of gravity has a small
variation|it must stay in the interval (1=e; 1� 1=e)|the reduction rate in
case of the analytic center varies broadly between 0.1 and 0.9.

� After 100 iterations the norm of the excess ke(p)k has decreased non-
monotonically by a factor of about 10�4, where a similar accuracy is ob-
tained using either center.

� The unit simplex in 9 dimensions represents in fact an 8-dimensional volume
computation problem. The burden to compute the center of gravity was
around 2/3 of the overall computation time of Algorithm 2. Compared to
the analytic center the center of gravity is already in this low dimensional
problem much harder to compute, requiring roughly 10{1000 times more
computation time.

F.3 Non-Conic versus Conic ACCPM

It must be emphasized that the crucial assumption for the conic ACCPM|
monotonicity of e(p)|is not given in case of MMmr. Furthermore, the accuracy
is limited in the concrete implementation. In that sense this comparison must
be interpreted cautiously. Here both the full
edged MMmr-model and the full
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Table F.2: ACCPM applied to Utopia.

data set (state spring 1997) is used. Trade is possible in 5 time periods (2000{
2040), and also CO2 permits are traded in all periods forming a 10-dimensional
price-space. The two Figures F.1 and F.2 show the behavior of the direct, non-
conic ACCPM versus the conic ACCPM for the CO2 scenarios 0%-reduction and
�20%-reduction. As measure for the quality of a solution the natural logarithm
of the norm of the excess, log(ke(p)k), is chosen, see the related discussion in
Chapter 5.

There are three curves in each �gure: (i) iterates from the direct ACCPM (solid
lines, Algorithm 2) as a reference, (ii) untransformed iterates of the conic AC-
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Table F.3: CoGCPM applied to Utopia.

CPM (dotted), and (iii) the `real' (transformed) solution-iterates of the conic
ACCPM (Algorithm 4) formed by a weighted sum of the direct iterates of the
conic ACCPM (dashed).

In both �gures the same qualitative behavior can be observed:

� ACCPM (solid line, Algorithm 2) decreases slower, but gets �nally further
down; furthermore it is less smooth.

� The iterates of both the direct ACCPM and the conic ACCPM (without
transformation of the solutions (dotted)) are comparable for the �rst 40
iterations. Then the conic iterates converge on a certain level of e(p), while
the direct ACCPM iterates decrease further.
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Figure F.1: Conic versus non-conic ACCPM, 0%-reduction scenario.
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Figure F.2: Conic versus non-conic ACCPM, �20%-reduction scenario.

� The conic ACCPM with the transformed iterates behaves much smoother,
even yet in the �rst iterations, and it reduces the excess much quicker in
the �rst 30{40 iterations. Afterwards, the transformed iterates converge
to a non-equilibrium price, leaving the norm of the excess on a higher
level. Among the possible reasons, why it does not converge to a true
solution, we �nd non-monotonicity of e(p) and a limited numerical precision
for both computing the analytic center and the oracle-response. In that
sense the conic version seems to be more sensitive to precision problems
and monotonicity than the direct ACCPM.

� For the conic ACCPM, ke(p)k of the direct (i.e. non-transformed) iterates
converge towards the norm of the excess of the solution-iterates. The reason
for this coincidence is that both price iterates in the conic case, i.e. the
transformed solution iterates and the direct iterates, converge toward the
same (non-equilibrium) price.

� It seems that the conic ACCPM `smells' quickly the approximate location
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of the solution with its weighted iterates, but looses it �nally. A possible
improvement of the direct ACCPM could therefore consist of using the
conic version with its transformed iterates, and once ke(p)k starts to raise
the direct ACCPM is used in a neighborhood of the best conic solution.

F.4 �-Negishi-Algorithm versus ACCPM

Here the full MMmr-model code together with the full regional data-sets of Sweden,
The Netherlands and Switzerland is present (state summer 1996). The prices
given are already in the unit US$/ton CO2; trade is allowed in the 4 periods
2000{2030.

it. P(2000) P(2010) P(2020) P(2030) ke(p)k
0 8.18 16.00 30.00 61.29 617.94

5 85.62 117.79 144.84 140.14 291.50

10 57.33 69.68 88.98 97.53 54.41

15 26.23 45.56 68.60 109.22 86.91

20 13.16 44.03 63.33 79.87 56.45

30 5.08 42.10 51.46 124.52 28.59

40 3.25 42.96 64.33 114.24 4.02

50 2.98 43.91 65.46 113.73 1.00

60 2.86 44.26 63.63 112.89 0.67

70 3.15 44.16 63.67 113.45 0.13

80 3.04 44.26 63.50 113.44 0.30

Table F.4: Permit prices [US$/t CO2] in the ACCPM-iterations and the corre-
sponding norm of the excess vector ke(p)k.

Table F.4 shows convergence of the direct ACCPM to a satisfying solution of the
equilibrium problem. As usual, the norm of the excess ke(p)k does not go down
monotonically.

In the �rst 4 iterations of Algorithm 5 a fast convergence can be observed, see
Table F.5. Each iteration reduces the norm of the budget excess vector kb:e:k
by about two order of magnitude, achieving an overall reduction of 5 order of
magnitude within 4 iterations. Then, in the last 2 iterations, a plafond is reached
by the norm of the budget excess, which is due to the limited accuracy in the
decomposition, measured as duality gap in the approximation of the Lagrangian.
While in the �rst iteration the stopping criterion in the decomposition is an
absolute duality gap of 10�4, it is set in the rest of the iterations to 10�6; this
corresponds to a relative duality gap of 10�7 and 10�9 respectively. Due to
numerical problems it was not possible to decrease it further. The results show
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Negishi weight CO2 permit price

it. Switzerland Sweden Netherlands 2000 2010 2020 2030 kb:e:k #it.

1 0.45000000 0.20000000 0.35000000 3.10 44.41 66.82 112.33 60.207 43

2 0.39019676 0.15302284 0.45678040 3.05 44.23 63.49 113.36 2.0496 56

3 0.39345156 0.15387045 0.45267800 3.11 44.20 63.59 113.39 0.0557 59

4 0.39336264 0.15384863 0.45278873 3.13 44.23 63.54 113.36 0.0026 60

5 0.39336458 0.15384931 0.45278611 3.11 44.20 63.58 113.38 0.0034 58

6 0.39336439 0.15384915 0.45278646 3.03 44.23 63.52 113.37 0.0018 61

Table F.5: The �-Negishi-algorithm for the �rst 6 iterations. The number of
iterations in the decomposition method is given in the last column #it.

the crucial in
uence of the accuracy in the decomposition, both on the overall
number of iterations and on the convergence of the �-Negishi-algorithm.

Note also that the price vector obtained in the �rst Negishi iteration based on
a starting weight vector is already near the true equilibrium price, or to say it
more generally, the prices are quite independent of the Negishi weights whereas
the budget excess is very sensitive to small changes in the weights. In the VIP-
approach a dual observation can be made (cf. Figure 7.1); the dual multipliers
of the budget constraints are quite independent of the prices, whereas the excess
e(p) is sensitive to changes in the price.

This dual robustness|on the one hand is the dual price of the excess constraint
in the Negishi welfare problem close to the equilibrium price and only weakly
in
uenced by the Negishi weight, and on the other hand the inverse of the bud-
get constraint in the regional VIP-problems is close to an equilibrium Negishi
weight and only weakly in
uenced by the price|is the reason for this remarkable
convergence of the �-Negishi-algorithm.

F.5 �- versus t-Negishi-Algorithm

The Negishi update scheme in iteration k + 1 used in the t-Negishi-algorithm is

�0k+1
r =

X
t2T

pNTX ;t(Cr;t � NTX r;t)

br;t
+ pT er; (F.1)

�k+1
r = �0k+1

r =
X
r

�0k+1
r :

Here p is the dual multiplier associated with the excess constraint
P

r2R er � 0,
and so pT er is the budget excess of region r. The expression

P
t2T pNTX ;t(Cr;t �

NTX r;t)=br;t is motivated from (E.2) where this is shown to approximate (modulo



F.5 �- versus t-Negishi-algorithm 147

Negishi weight CO2 permit price

it. Switzerland Sweden Netherlands 2000 2010 2020 2030 kb:e:k #it.

1 0.45000000 0.20000000 0.35000000 2.85 44.66 66.33 112.33 60.1984 36

2 0.42403936 0.14299279 0.43296785 2.91 44.03 63.12 113.36 14.5142 51

3 0.40364823 0.15470586 0.44164591 3.07 44.14 63.69 113.39 5.6157 53

4 0.39760614 0.15329384 0.44910002 3.05 44.19 63.61 113.36 2.0015 53

5 0.39495138 0.15379185 0.45125678 3.12 44.22 63.57 113.38 0.7880 51

6 0.39398597 0.15379777 0.45221626 3.07 44.23 63.54 113.37 0.2998 52

7 0.39360284 0.15383450 0.45256266 3.12 44.24 63.52 113.37 0.1163 56

8 0.39345687 0.15384259 0.45270055 3.06 44.22 63.56 113.37 0.0446 52

9 0.39340062 0.15384617 0.45275321 3.05 44.20 63.57 113.37 0.0173 55

10 0.39337861 0.15384816 0.45277323 3.09 44.21 63.57 113.37 0.0070 53

Table F.6: The t-Negishi-algorithm for the �rst 10 iterations. The number of
iterations in the decomposition method is given in the last column #it.

scaling) the existing weight; to make it numerically more robust1 the sum over
all time periods is taken. The reason why not simply the old Negishi-weight �kr is
used has to do with the di�erent scaling of the quantities. This heuristic seems to
be very sensitive on how much weight is put to the old weight �kr and how much
the budget excess pT er contributes. The implicit weighting in (F.1) did perform
most satisfying in our experiments and is therefore reported in Table F.6.

First note that the accuracy in the decomposition machinery was identical with
the case shown in Table F.5. To speed up the iterations, however, the feasibility
set in the decomposition was reduced, explaining why the number of decompo-
sition iterations is slightly below the ones of Table F.5. The major di�erence
between Table F.6 and F.5 is the speed of convergence; while the true compu-
tation of the dual multipliers yields a very quick decrease of the budget excess
kb:e:k, the reduction in Table F.6 is considerably slower. More aggravating even,
this heuristic depends sensitively on the implicit weighting when the budget ex-
cess is added to the old Negishi weight. As a detail note that the Negishi weight
is considerably more `jumpy' here compared to Table F.5, but the quality of the
�nal solution is similar.

1Based on the argument of no-arbitrage in a solution of the Negishi welfare problem it
follows that pNTX ;t(Cr;t�NTX r;t)=br;t is constant over time periods. However, in reality where
concrete solvers are at work, slight di�erences are possible. In fact, a coinciding accuracy of
10{12 digits was found; this summation has therefore two e�ects: increase further the accuracy,
and increase the weight in the sum (F.1).
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F.6 Conclusions

Based on the examples presented above together with further experiences the
following conclusions can be drawn.

� The cutting plane methods (Algorithm 2 and 4) used for solving VIPs
are much easier to implement and manage than the Negishi-approaches
(Algorithm 5). This is mainly due to the decomposition required in the
latter case.

� In our tests ACCPM (Algorithm 2) required only about 1/3 to 1/2 of the
computation time as compared with the �-Negishi-algorithm (Algorithm 5).
But this depends on the relation #regions/#goods, and on the behavior of
the decomposition method (Algorithm 6 in our case) when the number of
goods or regions changes.

� The center of gravity is much too costly in our examples. Moreover, the
analytic center shows in all examples tested a very good average volume
reduction.

� The new conic ACCPM (Algorithm 4) improves on ACCPM (Algorithm 2)
considerably|in the �rst 40 iterations. Here a two stage scheme may prove
useful in practice, where Algorithm 4 is used in the beginning, and once
ke(pk)k starts to raise, the scheme switches to Algorithm 2. A crucial open
question would then be, how the feasible set in Algorithm 2 is chosen after
such a switch. A reasonable strategy could take the set �k de�ned by
cutting f t = 1 g with the cone Kk stemming from the kth iteration of
Algorithm 4, because this intersection guarantees to contain (f;D)�� for
pseudo-monotone operators.
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