

Socrates Kypreos¹, Adriana Marcucci², Evangelos Panos¹

¹ Energy Economics Group – Laboratory for Energy Systems Analysis, PSI Villigen
² Chair of Economics/Resource Economics, ETH Zurich

Is Direct Atmospheric Capture the needed backstop technology for decarbonising the global energy system, or does it just complement BECCS?

8th Annual meeting of the Integrated Assessment Modelling Consortium, 2015

Overarching questions

- What is the least policy cost for the 2°C target and its regional distribution?
- How does this cost change if policy target were to be 2.5°C instead of 2°C?
- What is the role of Direct Air Capture (DAC) technology in climate stabilisation?
- Is DAC a backstop technology or does it just complement BECCS?
- What is the extra financial burden for the industrialised countries to convince Developing Countries for a global protocol in 2020?

Assessing the research questions - Outline

- Methodology:
 - the MERGE-ETL model
 - emission reduction scenarios
- Direct Atmospheric Capture (DAC):
 - technical and economic assumptions
 - impact of DAC on emissions and on shadow prices
 - regional penetration of DAC
 - impact of DAC on primary energy consumption
 - GDP losses with and without DAC
- Burden sharing schemes with DAC available:
 - Resource-sharing (equalitarian), effort sharing (equal GDP losses)
 - Full compensation of energy costs for DCs
- Conclusions

The MERGE-ETL model: structure

- Integrated Assessment Model maximising the global social welfare
- Bottom up description of the energy system with Endogenous Technology Learning
- Top down description of the economy (Ramsey-type)
- Simple climate cycle sub-model with optional damage function
- International trade of goods and resources

The MERGE-ETL model: structure

10 world regions with Negishi-weighted regional utility functions: European Union (EUP); Switzerland (SWI); Russia (RUS); Middle East (MEA); India (IND); China (CHI); Japan (JPN); Canada, Australia and New Zealand (CANZ); United States (USA); Rest of the World (ROW)

GHG emission reduction scenarios

Full participation of all countries after 2020.

Acronym	Description	REQ ¹ constraint for 2020-2010:	
BaU	Business as Usual	No targets	
2.5 DC 50	2.5°C with 50% probability	645 Gt C	
2.5 DC 66	2.5°C with 66% probability	540 Gt C	
2 DC 50	2°C with 50% probability	390 Gt C	
2 DC 66	2°C with 66% probability	305 Gt C	
2 DC 50 DAC	2°C with 50% prob. and DAC technology available	Same REQ constraint as the corresponding emission reduction scenarios without DAC	
2DC 66 DAC	2°C with 66% prob. and DAC technology available		

¹ Remaining Emission Quotas after 2020 for staying below the indicated post-industrial mean atmospheric warming and the corresponding probability: source IPPC AR5 WG3 and own estimations based on model runs

- Based on IIASA B2 scenario for reference GDP, pop growth and adjustment of AEEI
- No carbon control policies other than some voluntary pledges of limited range
- Fossil based energy system, with renewables penetrating after 2050

Power generation by tech. (PWh/yr)

CO₂-eq emissions and prices without DAC

- In BAU emissions reach levels of 24 27 Gt C_e over the period of 2100 2120
- In carbon control scenarios emissions peak at around 2020 2030 and then go negative
- Significant reduction in shadow prices for the 2.5°C case compared to 2°C case

Implementation of DAC technology

	APS estimates ¹ :	Floor values ² :
Annualised capital cost:	\$350/tCO ₂ captured	\$115/tCO ₂ captured
Annual O&M cost:	\$120/tCO ₂ captured	\$40/tCO ₂ captured
Heat consumption:	8.1 GJ/tCO ₂ captured	5.0 GJ/tCO ₂ captured
Electricity input:	0.5MWh/tCO ₂ captured	0.5MWh/tCO ₂ captured

- Learning by doing and learning by research (learning rate 10%)
- Built next to the disposal facilities of pressurised CO₂
- Available from 2060 with maximum deployment rate 7.5% per year

¹ Direct Air Capture of CO2 with Chemicals. A Technology Assessment for the APS Panel on Public Affairs, APS, June, 2011

² From literature e.g. Zeman (2007), Lackner (2012), Keith (2009), Baciocchi (2006), etc. and own estimates

Impact of DAC in CO2 emissions and prices

- When DAC options are available there is reduced mitigation with late compensation: - higher emissions in 2020 – 2030 \rightarrow stringent reduction rates at the end of horizon
- Significant reduction in CO₂ shadow prices compared to non-DAC scenarios
 - Initially due to lower mitigation effort, after 2060 due to DAC deployment

Penetration of DAC technology

- Conservative penetration of DAC indicating a complementary role to CCS
 - low-carbon options benefit also from the resulting carbon shadow prices
- Emerging economies and DCs show larger DAC deployment rates
 - large CO₂ storage availability & abundant energy resources for input to DAC facilities

- 19 22% increase in primary energy consumption in case of DAC
- Heat needed for DAC is produced mostly from gas and oil
- Electricity needed for DAC is produced by renewables

- Climate change mitigation effort varies 1.6 4.0% of the cumul. global GDP
- The 2.5°C target reduces global GDP losses by 50% compared to the 2°C case
- DAC reduces the total cumulative abatement cost by 30% 35%
 - the differenece shrinks towards the end, due to more mitigation in the DAC case

Faul scherrer institut Impact of DAC on regional GDP losses, 2020-2100

- 35% reduction in global GDP losses in the 2°C with 66% probability case
- GDP losses for oil and gas producers reduce with DAC by 55% 70%:
 - preservation of the value of oil and gas reserves
 - international oil and gas trade does not fall as in the case w/o DAC
 - gains from the carbon market (less imports of permits, some become exporters)

Cumulative GDP losses wrt BaU by region in % for the 2 °C 66% with and w/o DAC

Burden sharing with DAC 2°C with 66% prob.

- Perfectly functioning carbon markets are assumed
- Efficient rule \rightarrow strong regional differences in GDP losses
- Equilitarian rule \rightarrow picture is not changed for India and RoW (high population)
- **Relative GDP losses** → most balanced but industrialised countries pay higher costs
- Energy Cost compensation: \rightarrow less expensive for the industrialised countries

GDP losses relative to BaU in % for different burden sharing rules, 2020-2100

Damages due to climate change and benefits of emissions control

- Market damages are assumed to be proportional to temperature change
- Non market damages are assumed to be quadratic in temperature rise
- The avoided market and non-market damages become apparent in the 2nd half
- Benefits of CO₂ emission control and those of improved LAP may change the picture of winners and losers by region → can motivate for policy actions

Damages for BaU vs the 2 °C case and benefits of carbon control as % of consumption

- The 2°C is technically feasible and if we choose the proper burden sharing rule it can also be equitable
- Equal relative GDP losses is a balanced burden sharing allocation:
 - Full compensation of the energy cost for India and RoW is less expensive for the industrialised countries
 - Perhaps a combination of both could convince DCs to participate in a global protocol
- The climate change mitigation costs can be further reduced if benefits of climate change mitigation (avoided damages) and reduction of LAP are considered
- Key technologies for power generation are wind, solar PV and BECCS, while for energy conversion, synfuel and H₂ from biomass, coal and gas with CCS

- DAC reduces marginal costs and global GDP losses by factors of two to three
- GDP losses become more balanced in the case of DAC for oil and gas producers
- DAC in our analysis with conservative assumptions is rather complementary to CCS and not the backstop technology
- DAC needs definitely R&D&D spending to become mature and has good chances to complement BECCS

Wir schaffen Wissen – heute für morgen

Thank you for your attention !

