Kathrin Volkart, Martin Densing, Evangelos Panos, Christopher Mutel (PSI)

Nagore Sabio, Neil Strachan (UCL)

Implementation of multi-objective optimization in the MARKAL framework for simultaneously analysing the economic, societal and environmental performance of the global energy system

5 July 2016, wholeSEM Annual Conference 2016, Cambridge, UK
Climate change

http://www.momscleanairforce.org/
Climate change dominates the current environmental discussion and the main reason for the transformation of our energy systems.

The energy system transformation has impacts that go beyond climate change. These multiple dimensions have been acknowledged by:

- UNFCCC (2002):
 The requirements to be met by the National Adaption Programmes of Action [...] are appropriate and ambitious, notably [...] demonstrating clear priority choices [...] concerning social, economic and ecologic-environmental dimensions [...]

- IPCC WG III (2014):
 Climate change mitigation is [...] a multi-objective problem embedded in a broader sustainable development and equity context.

The multi-dimensional impacts are also referred to as:

- *Energy Trilemma* by the World Energy Council, and
- *Pillars of Sustainability* by the United Nations.
In IPCC WG III (2014), the following policy objectives are listed to be aligned with climate mitigation strategies:

- Air pollution and health
- Energy security
- Energy access
- Employment
- Biodiversity conservation
- Water use

Goals

- Multi-dimensional analysis of energy system transformation pathways
- Identification of trade-offs of energy system transformation pathways
- Supporting decision-making in the context of climate change mitigation

- Simultaneously addressing the complexity and multi-dimensionality of energy systems
Global Multi-regional MARKAL (GMM) model

- Energy system model
- Least-cost optimization framework
- 15 world regions
- Time horizon of 100 years
- Developed at PSI over the last 15 years
Modelling framework: Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Delayed climate action scenario</th>
<th>Climate action scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Increase</td>
<td>Strong increase</td>
</tr>
<tr>
<td>GDP</td>
<td>GDP growth has priority</td>
<td>Less GDP growth</td>
</tr>
<tr>
<td>Climate change</td>
<td>Adaptation</td>
<td>Mitigation</td>
</tr>
<tr>
<td>CO₂ markets</td>
<td>Develop slowly</td>
<td>Rapid state control</td>
</tr>
<tr>
<td></td>
<td>(23-45 $/t CO₂ in 2050)</td>
<td>(70-80 $/t CO₂ in 2050)</td>
</tr>
<tr>
<td>Unconventional</td>
<td>Opening of markets; incentive to use due to high demand</td>
<td>Regulated; little incentive to use due to lower demand</td>
</tr>
<tr>
<td>resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable</td>
<td>Limited promotion</td>
<td>Selective state promotion</td>
</tr>
<tr>
<td>energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCS</td>
<td>Market driven</td>
<td>State support</td>
</tr>
<tr>
<td>Nuclear</td>
<td>plants under construction partially not in operation</td>
<td>State support</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Based on economic criteria</td>
<td>State promotion</td>
</tr>
</tbody>
</table>
The assessment is based on an illustrative set of objectives:

• Economy
 – Total discounted system costs, in M$

• Environment
 – LCA-based greenhouse gas emissions, in Mt CO$_2$-eq
 – Non-renewable energy use, in PJ

• Society
 – Maximum fatalities in accidents, ratio scale
 – LCA-based particulate matter emissions, in Mt PM10-eq

• Security of supply
 – Import of energy carriers, in PJ
 – Oil use in surface transport, in PJ

LCA = Life-cycle assessment
Results: Total Primary Energy Supply

Delayed climate action scenario
- Coal use decreases slowly
- Gas use strongly increases
- Oil and renewables grow slowly
- Nuclear, biomass and hydro are stable

Climate action scenario
- Coal use strongly decreases
- Gas use strongly increases
- Nuclear and biomass grow strongly
- Renewables and hydro grow slowly
Results: Electricity generation

Delayed climate action scenario

- Coal and gas power increase
- Nuclear generation is stable
- Hydro power increases slightly
- Renewable energies expand

Climate action scenario

- Coal and gas power with CCS introduced
- Nuclear generation increases strongly
- Hydro power increases
- Renewable energies expand

Chart showing electricity generation by energy source from 2010 to 2050.
Results: Co-benefits and adverse side-effects

Delayed climate action scenario
- GHG emissions, non-renewable energy use, oil in surface transport and maximum consequences increase
- Imports are stable
- PM emissions decrease

Climate action scenario
- Maximum consequences increase
- Non-renewable energy use and oil in surface transport are stable
- GHG emissions, imports and PM emissions decrease
Based on the small set of objectives, the co-benefits and adverse side-effects of climate action compared to a less stringent CO₂ policy pathway are:

• Environment
 – Not only CO₂ but also the sum of all GHG emissions decreases.
 – The increasing energy demand is mainly covered by renewable energies what leads to stable use of non-renewable resources.

• Society
 – The expansion of low-carbon nuclear and hydro power generation leads to increasing maximum consequences.
 – Due to the decrease in use of fossil energy, the particulate matter emissions decrease faster and stronger.

• Security of supply
 – With the use of more domestic renewable energies, the import of energy carriers is reduced.
 – Oil use in surface transport is reduced and replaced by alternative fuels.
• In our limited set of objectives, we found increasing maximum consequences as an adverse side-effect of climate action.

• Questions:
 – Which technologies are responsible for this side-effect?
 – How can we reduce this side effect at low cost?
 – In which sectors and regions are these «low-hanging fruit»?

• Idea:
 – Change the modelling framework to allow for optimizing for multiple objectives instead of cost only

• Approaches:
 – Weighted-sum approach
 \[
 \min(\text{cost}) \rightarrow \min(w_{\text{cost}} \cdot \text{cost} + w_{\text{other}} \cdot \text{other indicator})
 \]
 – Epsilon-constraint approach
 \[
 \min(\text{cost}) \rightarrow \min(\text{other indicator}) \text{ s.t. cost constraint}
 \]
Results: Epsilon constraint method

- Minimization: maximum consequences
- Constraint: 120%/115%/110%/105% of total discounted system costs in the least cost run
Results: Epsilon constraint method

- Climate action scenario
- Minimization: maximum consequences
- Constraint: 105%/120% of total discounted system costs in the least cost run
Results: Epsilon constraint method

- Climate action scenario
- Minimization: maximum consequences
- Constraint: 105% of total discounted system costs in the least cost run
Applying the epsilon constraint method to analyse the adverse side effect of high maximum consequences of the climate pathway, leads to the following conclusions:

• Which technologies are responsible for this side-effect?
 – Oil extraction
 – Oil refining
 – Hydro power generation
 – Nuclear power generation

• How can we reduce this side effect at low cost?
 – Difficult to reduce the maximum consequences at low cost
 – Considerable investment is required to reach low levels

• In which sectors and regions are these «low-hanging fruit»?
 – Mainly hydro power
 – Mainly CHINAREG
• Delayed climate action scenario
• Constraint: 105% of total discounted system costs in the least cost run
• Period: 2010-50
 – Cumulative reduction potential compared to the least cost run
 – Co-benefits

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost min</td>
<td>1.52E+08</td>
<td>1.8E+06</td>
<td>2.8E+07</td>
<td>9.7E+02</td>
<td>2.5E+03</td>
<td>9.2E+06</td>
<td>5.1E+06</td>
</tr>
<tr>
<td>GHG min</td>
<td>+1%</td>
<td>-16%</td>
<td>-4%</td>
<td>+4%</td>
<td>-16%</td>
<td>+9%</td>
<td>-3%</td>
</tr>
<tr>
<td>NRR min</td>
<td>+1%</td>
<td>-7%</td>
<td>-10%</td>
<td>-4%</td>
<td>-5%</td>
<td>-0%</td>
<td>-5%</td>
</tr>
<tr>
<td>CONSQ min</td>
<td>+1%</td>
<td>+16%</td>
<td>-2%</td>
<td>-32%</td>
<td>+3%</td>
<td>+12%</td>
<td>-12%</td>
</tr>
<tr>
<td>PMF min</td>
<td>+2%</td>
<td>-13%</td>
<td>-3%</td>
<td>+2%</td>
<td>-40%</td>
<td>+9%</td>
<td>-12%</td>
</tr>
<tr>
<td>IMP min</td>
<td>+1%</td>
<td>+2%</td>
<td>-1%</td>
<td>-5%</td>
<td>+4%</td>
<td>-30%</td>
<td>-6%</td>
</tr>
<tr>
<td>OIT min</td>
<td>+1%</td>
<td>+4%</td>
<td>-1%</td>
<td>-8%</td>
<td>+13%</td>
<td>-6%</td>
<td>-30%</td>
</tr>
</tbody>
</table>
• Delayed climate action scenario
• Cumulative results for the period 2010-50
• Constraint: 105% of total discounted system costs in the least cost run
• Scale: center (worse) to outside (better)
• Conclusions
 – Based on a small set of objectives, we could perform a multi-dimensional analysis of two energy system transformation pathways.
 – We identified trade-offs of a climate action pathway.
 – The least cost framework MARKAL could be adjusted such that multi-objective optimization of energy systems is possible.
 – The epsilon constraint method allows for multi-objective optimisation without adverse effects of normalization and the analysis of side-effects.

• Outlook
 – Analysis of the trade-offs of climate change policies, also on regional levels
 – Expansion of the set of objectives
 – Support of decision-making by comprehensively presenting co-benefits and disadvantages of the energy system transformation pathways
I would like to thank

- Martin Densing, Evangelos Panos (PSI)
- Chris Mutel (PSI)
- Nagore Sabio, Neil Strachan (UCL)
- Peter Burgherr (PSI)
- Moritz Köhme (ETHZ)