



### Wir schaffen Wissen – heute für morgen

SETAC Europe 25th Annual Meeting

## Integrating LCA and Scenario Modelling of the Energy System for Sustainable Policy-making

Kathrin Volkart Laboratory for Energy Systems Analysis, Paul Scherrer Institute (PSI), Switzerland



- Motivation
- Methodologies and concept
- Integration of Global MARKAL model and LCA
- Outlook



- The world faces various challenges related to the energy system, e.g.
  - Climate change

PAUL SCHERRER INSTITUT

- Resource depletion
- Energy access
- Security of supply
- Ecosystem damages
- Human health damages
- Addressing one of the challenges mentioned above may influence (the solution of) other challenges. This leads to complex decisions for (energy) policy-makers.
- Therefore, integrated and consistent assessment methodologies are required for decision support and for the transition to sustainable energy systems.









- Motivation
- Methodologies and concept
- Integration of Global MARKAL model and LCA
- Outlook



#### Environmental assessment of single energy technologies and processes

- Included: detailed environmental and human health criteria
- <u>Not included</u>: dynamic temporal development, complete energy system





#### Developing, quantifying and analyzing scenarios of the energy system

- <u>Included</u>: system perspective, dynamic temporal development, techno-economic data
- Not included: other sustainability criteria (environment, human health)





- Combination of
  - system-wide and dynamic temporal perspective of EEM, and
  - detailed environmental and human health technology assessment of LCA
- Expected knowledge gains and insights
  - Integrated and consistent assessments of energy systems
  - Analysis of co-benefits and trade-offs between sustainability aspects of energy systems
  - Insights for energy policy-making



- Motivation
- Methodologies and concept
- Integration of Global MARKAL model and LCA
- Outlook



### Developing, quantifying and analyzing scenarios of the global energy system

- <u>G</u>lobal
  - All energy sectors
  - All energy resources
- <u>M</u>ulti-regional
  - 15 world regions
  - Trade (not for electricity)
- <u>M</u>ARKAL
  - Bottom-up, technology rich (> 300)
  - Perfect-foresight (2010 2100)
  - Least cost optimization (Total discounted system costs)





#### **Sub-ordination of the integrated models**





# Integration of GMM model and LCA





### **Concept of integrating ecoinvent data in the GMM model**



 $\rightarrow$  (4 flows) x (>300 processes) x (15 regions)



#### Allocation of an ecoinvent dataset to each GMM process

| GMM<br>process | GMM<br>description               | ecoinvent v3<br>name                    | ecoinvent v3 regions                                                                                                                                                                                                                                                          |
|----------------|----------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S12            | Lignite<br>Extraction            | Lignite mine operation                  | RER, RoW                                                                                                                                                                                                                                                                      |
| E01            | Coal<br>Conventional<br>Electric | Electricity<br>production, hard<br>coal | ASCC, AT, AU, BA, BE, BG, BR, CA-<br>AB, CA-NB, CA-NS, CA-ON, CL, CN,<br>CZ, DE, DK, ES, FI, FR, FRCC, GB,<br>HICC, HR, HU, IE, IN, IT, JP, KR,<br>MRO, MX, MY, NL, NO, NPCC, PE,<br>PL, PT, RFC, RO, RoW, RU, SE,<br>SERC, SI, SK, SPP, TH, TR, TRE,<br>TW, TZ, UA, WECC, ZA |

. . .

. . .

. . .

. . .



### Definition of the life-cycle impacts per activity and per capacity





### Definition of the life-cycle energy use per activity and per capacity

diesel from refinery operation

- Electricity
- Heat
- Transport

| petroleum refinery           | $\int \ln f \rightarrow$ |
|------------------------------|--------------------------|
| petroleum                    | Up                       |
| electricity, medium voltage  | <b>7</b> -               |
| heat, district or industrial |                          |
| ammonia, liquid              |                          |
| refinery sludge              | 0                        |
| Benzene                      |                          |
| Methane, fossil              |                          |
| Hydrocarbons, aliphatic      |                          |
|                              |                          |

frastructure → LC-energy use per capacity Postream→ cut-off

Operation

→ LC-energy use per activity



## Integration of GMM model and LCA

#### **Regional harmonization**



Regional coverage for E01 in ecoinvent v3

Regional coverage for E01 in GMM model



#### Update of v2 datasets to v3

• ecoinvent v2 (direct linking)



• ecoinvent v3 (indirect linking)





#### **Ex-post assessment of environmental burdens of delayed climate action scenario**



- Current limitations:
  - electricity sector only
  - complete life-cycle calculation (no separation of the processes in the energy chain)
  - exogenous (ecoinvent) energy mixes



- Motivation
- Methodologies and concept
- Integration of Global MARKAL model and LCA
- Outlook



#### Introduction of external costs to the GMM model





#### Introduction of other sustainability aspects for Multi-criteria decision analysis (MDCA)

## min (cost) $\rightarrow$ min (w<sub>1</sub> \* INDICATOR<sub>1</sub> + w<sub>2</sub> \* INDICATOR<sub>2</sub> + ...)



Environment



Society



Economy



Security of Supply



## I would like to thank...

#### Martin Densing, Chris Mutel & LEA staff





# Thank you for the attention

## Are there any questions?



Kathrin Volkart, PSI