PAUL SCHERRER INSTITU

Wir schaffen Wissen – heute für morgen

1st Educational Workshop of Simulation Lab, ETH, 1st Oct 2015

Rajesh Mathew Pattupara

Long-term evolution of the Swiss electricity system under a European electricity market: Development and application of a cluster of TIMES electricity models

- Introduction Background and Motivation
- CROSSTEM model
- TIMES modelling framework
- Scenarios & Key Assumptions
- Results
- Model limitations, issues and challenges
- Conclusions

Introduction

- Electricity accounts for one quarter of Swiss energy demand
- Large differences in seasonal output, seasonal demand.
- Creates seasonal dependence on electricity import.

Swiss Electricity generation mix (2014)

Source: "Schweizerische Elektrizitätsstatistik 2013", BFE Bern

Objectives

- **Nuclear phase out** No replacement of existing Nuclear power plants at the end of their 50 year lifetime. Last power plant off grid by 2034.
- Ambitious carbon reduction targets

Difficult to predict the future

- Uncertainty regarding future electricity demand
- Uncertainty regarding future supply options
- Too long a timescale to make accurate predictions

Solution

• Energy System models

Future demand pathways

Figure 2: Electricity demand of the scenarios. Demand is after hydro-pumps, after import/export, and before losses. The demands of the SCS scenarios should be those of the BFE scenarios with same name, but seem to be different. The PSI-elc study (not shown) uses the demands of the BFE scenarios. Greenpeace: without electricity used for H₂-production

Source: M. Densing, "Review of Swiss Electricity Scenarios 2050", PSI (2014)

Figure 9: Yearly production mix in 2050.

Source: M. Densing, "Review of Swiss Electricity Scenarios 2050", PSI (2014)

Model Features

- Single region model
- Time horizon: 2000 2100
- An hourly timeslice
- Characterization of about 140 technologies and over 40 energy and emission commodities

Key Parameters

- Exogenous electricity demand for the future
- Range of primary energy resources
- **Exogenous** electricity import and export from four countries

R Kannan & H. Turton (2011) - *Documentation on the development of the Swiss TIMES electricity model* Available at <u>http://energyeconomics.web.psi.ch/Publications/Other_Reports/PSI-Bericht%2011-03.pdf</u>

Situation in neighbouring countries

Source: N. Zepf, "Das Rezept gegen die Stromlücke", AXPO (2003)

Objectives:

- Understand the developments in the neighbouring countries Germany (DE), Austria (AT), France (FR) and Italy (IT).
- Quantify the extent to which these developments affect the Swiss electricity sector.

- CROSs border Swiss TIMES Electricity Model
- Extension of the STEM-E model to include the four neighbouring countries
- Time horizon: 2000 2050 in
- An hourly timeslice (288 timeslices)
- Detailed reference electricity system with resource supply, renewable potentials and demands for 5 countries
- Calibrated for electricity demand and supply data between 2000-2010
- Endogenous electricity import / export based on costs and technical characteristics

TIMES modelling framework

TIMES – The Integrated MARKAL / EFOM System

- Technology rich, Perfect foresight, cost optimization framework
- Used to explore a range of parametric sensitivities under a "what-if" framework via exploratory scenario analysis.
- Integrated modelling of the entire energy system
- Prospective analysis on a long term horizon (20-50-100 yrs)
- Allows for representation of high level of temporal detail load curves
- Enhanced Storage algorithm modelling of pumped storage systems
- Optimal technology choice based on costs, environmental criteria and other constraints.

The TIMES Objective Function – is the discounted sum of the annual costs minus revenues

$$NPV = \sum_{r=1}^{R} \sum_{y \in YEARS} (1 + d_{r,y})^{REFYR-y} \bullet ANNCOST(r, y)$$

where:	
NPV	is the net present value of the total cost for all regions (the OBJ);
ANNCOST(r,y)	is the total annual cost in region r and year y;
d _{rv}	is the general discount rate;
RÉFYR	is the reference year for discounting;
YEARS	is the set of years for which there are costs (in the horizon, plus past and before years EOH;
R	is the set of regions in the area of study

TIMES modelling framework

Alternative low carbon electricity pathways in Europe and knock-on effects on the Swiss electricity system

	CROSSTEM Scenarios			
Least Cost	Baseline scenario No particular constraints in technology investment* EU-20-20-20 targets applied for emissions and renewable based generation			
No Nuclear (noNUC)	Nuclear Phase-out scenario Nuclear phase-out in Switzerland by 2034 (50 year lifetime), in Germany by 2023, France to reduce nuclear share to 50% of total elc generation by 2025 and beyond All other conditions same as LC			
Climate Target (CO2)	De-carbonization of power sector (95% CO_2 reduction by 2050 from 1990 levels) for all five countries together All other conditions same as noNUC.			

* except where already part of policy: No nuclear investment in Italy (IT) and Austria (AT). No Coal investment in Switzerland (CH). Nuclear fleet can be replaced up to todays level.

Input Assumptions

- Electricity Demand EU Trends to 2050 (Reference scenario), BAU demands for CH (SES 2050)
- **Trade with "fringe regions"** Historical limits applied
- **CO2 price** European ETS prices implemented (SES 2050, Bfe)
- **Fuel Prices** International fuel prices from WEO 2010.

Methodological Assumptions

• **Copper Plate regions** – No transmission and distribution infrastructure within each country. Interconnectors between regions.

Switzerland – All CROSSTEM scenarios

- noNUC Nuclear power replaced by gas power; reduced imports as it is more expensive
- CO2 Gas CCS + Geothermal for baseload; Net exporter by 2050 Due to the availability of CCS storage

Electricity generation mix 2050

Load Curve – Summer Weekday 2050 (CO2)

Load Curve – Winter Weekday 2050 (CO2)

Capital Outlay per period

- Capital Investment highest for CO2 scenario, lowest for noNUC
- Total System Cost (excl Trade Cost/Revenue): LeastCost 275 bio CHF, NoNUC 305 bio CHF, CO2 – 332 bio CHF

Interconnectors

Electricity generation Cost

Source: M. Densing, "Review of Swiss Electricity Scenarios 2050", PSI (2014)

Limitations & Uncertainties

- CROSSTEM is not a pure dispatch model
- Modelling of representative days Overall simplifications
- Trade with fringe regions Inclusion of surrounding countries
- T&D infrastructure not explicitly modelled.
- CO2 transport across countries not modelled
- Model assumes perfect information, perfect foresight, well functioning markets and economically rational decisions – Optimal solution for 5 countries together, not for each country

The CROSSTEM Universe

- A new electricity system model for Switzerland with an emphasis on cross-border trade has been developed
- Various scenario explorations conducted to test robustness of model
- Feasibility of a low carbon electricity pathway has been demonstrated

PAUL	S C H E I	R R E R I	NSI	TUTUT
	-			
		-		

Thank you for your attention !!!

Energy Economics Group

Laboratory for Energy Systems Analysis

General Energy Research department & Nuclear Energy and Safety Research Department

