

Conditions for the Deployment of Alternative Drivetrains

A global energy system perspective

Martin Densing, Hal Turton, Georg Bäuml Paul Scherrer Institute (Switzerland), VOLKSWAGEN AG

Framework

• Project: in cooperation with car manufacturer Volkswagen

• Goal: to understand how the development of the global energy system influences the transport sector, focusing on

- personal car technologies, and the corresponding
- fuelling options, up to 2050

• Approach: Scenario Analysis with a detailed energy system model (GMM)

- → sensitivity of the energy system and technology choice to some key uncertainties: direction and magnitude of impact
- \rightarrow identification of robust trends
- → 'what-if' assumptions about future, no forecast

Contents

- Introduction of the Energy System Model (GMM)
- Overview of Selected Uncertainties for the Scenario Analyses
- Some Results of the Scenario Analyses
 - for Personal Car Sector
 - for Other Sectors of the Energy System

GMM (Global Multi-Regional MARKAL Model)

PAUL SCHERRER INSTITU

- Bottom-up model: detailed representation of resources, technologies, energy flows, and technological change/learning
- Cost-optimization model: yields least-cost solutions for the global energy system under given sets of assumptions and constraints
 - Solution is globally optimal allocation of society's resources
 - Costs and "prices" in GMM represent cost of production, or the scarcity value based on the cost of substitutes (not "real-world" market prices, e.g. for oil)
- Long-term perspective: project reports results until 2050, but results until 2100 are available,
 - addressing long-term energy issues, e.g., resource depletion, climate change policy, economic development and technology learning
- End-Use-Demand inputs: based on IPCC-SRES B2-scenario ("middle-of-the-road"); exogenously given
- Endogenous Technology Learning (ETL): unit costs of key technology components decrease with increasing experience (cumulative installations); e.g. battery costs, fuel cell costs

Energy System in GMM (simplified)

approx. 400 technologies per world region

T&D: Transport and Distribution

World-Regions of GMM

- For each region:
 - Technology parameters: Costs, efficiencies, size, growth constraints etc.
 - Demands: E.g. km-demand growth for personal car transport
 - · Policies, resources, renewable potential, etc.
- Inter-regional trade of energy carriers (limited by transaction costs)
- Inter-regional technology diffusion of key components

WEUR := EU27 + Switzerland + Norway

Endogenous Technology Learning

PAUL SCHERRER INSTITU

Empirically, unit production costs depend on cumulative capacity:

Key components: Electric battery (in Battery Electric Vehicle, Hybrid Vehicles), Hydrogen FC, Gasifier,...

- Learning-by-doing: Unit cost u_t driven by cumulative capacity c_t
- Clustering: Key components can be part of several technologies \rightarrow Sum of global cumulative capacity in all technologies determines u_t
- Exp.: Battery Storage (kWh): starts at 2010: 300\$; 15% decrease by doubling capacity; lower bound: 100\$

Car Technologies in GMM

ICEVs:

- Liquid Fuel ICEVs: Fuels: Gasoline or Diesel, Ethanol, Methanol blending, FT-Diesel, Biodiesel
- Advanced ICEV: Better efficiency*, no electric motor
- Gas Fuel ICEV: Fuel is CNG; otherwise similar to Liquid Fuel ICEV

Hybrids:

- Liquid Fuel Electric Hybrid (HEV): Cars with ICE and a small auxiliary battery with electric motor. Fuel choices similar to Liquid Fuel ICEV
- Gas Fuel Hybrid: Fuel is CNG; otherwise similar to HEV
- Hydrogen Fuel Cell Vehicle (HFCV, HFV): Cars with a fuel cell, buffer-battery, and electric motor
- Hydrogen Hybrid: Cars with a hydrogen ICE; otherwise similar to HEV
- Plugin-Hybrid Electric Vehicle (PHEV)

Battery-Electric Vehicle (BEV): with large battery (48kWh)

(can substitute other demand technologies in range and power, as all car technologies)

based on MIT Sloan Automotive Laboratory's naturally-aspirated spark ignition (NA-SI) engine (no turbo, no hybrid). Ex. of efficiency measures: friction reduction (engine, tires, aerodynamics), smart cooling, variable engine geometries, reduced weight, intelligent gear shift, no stop-restart.

Short-Range Car

Empirically, mean car travel distance is short (work; shopping; future: emission-restricted city centres)
 Travel demand is split. Assumption: 10% of km-demand satisfied by Short Range Cars.

Vehicle Category	Long-Range Market	Short-Range Market
Liquid Fuel ICEV	all variants	gasoline fuelled
Advanced ICEV	all variants	gasoline fuelled
Gas Fuel ICEV	\checkmark	-
Petroleum Electric Hybrid (subcategory of HEV)	\checkmark	\checkmark
Hydrogen Fuel Cell Vehicle (FCV)	\checkmark	\checkmark
Hydrogen Hybrid	\checkmark	-
Gasoline Fuel Cell Vehicle	\checkmark	-
Plug-In-Hybrid Electric Vehicle (PHEV)	\checkmark	\checkmark
Battery-Electric Vehicle (BEV)	\checkmark	\checkmark

Short-Range Car Parameters:

- ~100 km actual drive range (identical mileage for all world-regions)
 - short-range hybrids (HEV, plug-in, FCV) become relatively more efficient
 - e.g. plug-in HEV: 75% travel in electric mode (normal version: 50%)
- BEV: significantly smaller battery (18kWh)
- Smaller (cheaper) engine/FC/storage/battery in other vehicles: e.g. Plug-In HEV, FCV

Policy stringency (climate and sectoral)

			Policies inactive	Policies active car efficiency targets biofuel targets carbon price 	Policies active & reduction target (50% CO ₂ -emission cap relative to year 2000)	
		moderate oil and gas resources	"No Policy"	a. "Central Case" b. "No CCS" (CCS unavailable)	"Low Emissions"	
		low oil and gas resources (~50% reduction)	"Low Resources & No Policy"	"Low Resources"	_	
Resource pessimism CCS: Carbon Capture and Storage Car Efficiency: E.g. EU-targets (120g CO ₂ /km for new cars after 2012), regionally varying and extrapolated Biofuel targets: for the whole transport sector (regional current targets and extrapolated) Carbon price: CO ₂ price for the energy system, increasing at regionally varying speed with a long-term leve 200\$/tCO ₂						

1200 Renewables Biomass 1000 Nuclear Gas Oil 800 Coal EJV 600 400 200 0 2020 2030 2040 2010 2050 2000

Global Primary Energy Supply

- Renewables, biomass and coal (due to CCS) are expanding
- **Developing countries** increase share of energy use (and emissions) (dotted line, Asia
 - + Latin Am. + Middle East + East Europe)

- Hybrids dominate in 2050; natural gas cars are attractive; electric and hydrogen vehicles play a small role (under these assumptions)
- Short-range market (SR): battery vehicles are costeffective; conventional technology is replaced

Car Technology and Fuel in year 2050 in Scenarios

PAUL SCHERRER INSTITUT

Electricity generation under different scenarios

- Depletion of cheap oil
 - is a major driver for many technology developments over the long term (hybrids, CNG vehicles, alternative fuel production)
- Climate policy
 - drives earlier and additional deployment of hybrids and CNG
 - enables: BEVs, FCVs, biofuels, H₂, more expensive renewables (e.g. solar), nuclear
 - stringent climate policy (50% target) further accelerates deployment of alternative transport technologies
- CCS availability
 - crucial for decarbonizing electricity / hydrogen (in both cases, production primarily from coal)
 → important for supporting new transport technologies
 - one implication is that more rapid deployment of nuclear would have a similar impact
- Car technology (under the above "ifs")
 - HEVs are generally attractive under all cases, short-to-long term
 - CNG vehicles may be interesting in short-medium term
 - BEVs are a mid- to long-term solution for short-range market (but less attractive for long-range)
 - H₂ FCVs are most attractive over the very long-term (beyond 2050)

- Azar et al. (2009): Global energy scenarios meeting stringent CO₂ constraints cost effective fuel choices in the transportation sector
- Hedenus et al. (2010): Cost-effective energy carriers for transport the role of the energy supply system in a carbon-constrained world
- Grahn et al. (2009): Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors
- Densing, Turton, Bäuml (2012): Conditions for the successful deployment of electric vehicles a global energy system perspective, *The Energy Journal*, in press

...our group seeks a PhD Student and a Post-Doc...

Thank you!

Total Car Fleet

Short-Range Car Fleet

Long-term drivers fo HFCVs:

- technology learning reduces FC stack costs
- H₂ is also used in non-car transport \rightarrow synergy in infrastructure build-up
- cheap low-carbon H_2 is crucial (CCS availability)
- short-range car sector: BEVs are cost-competitive due to reduced investment costs

Other Surface Transport: Trucks, buses, other commercial road vehicles, 2- and 3-wheelers, rail, ships

Other Surface Transport Sector

WEC/PSI (2011): Global Transport Scenarios 2050

Some endogenous costs of key components in GMM:

component	initial cost (year)	decline by capacity doubling	floor
Battery Storage (kWh)	300\$ (2010)	15%	100\$
Mobile Fuel Cell (kW)	250\$ (2010)	15%	50\$
Solar PV (kW)	5500\$ (2000)	18%	1000\$

Comparison: Exogenous battery costs estimation in industry:

Hydrogen Production Costs in GMM:

Note:

- US Dollar based on year 2000
- · investment costs annualised with 5% discount rate
- · feedstock costs constant in chart (GMM fuel costs are endogenously varying)

Emissions

CO2 Emissions (energy-related)

Low oil and gas resources lead to slightly higher CO2 emissions with climate policy (higher use of coal slightly outweighs improvements in efficiency and increased use of renewables)

100

Alternative fuel production

Central Case

Seite 22

Car Technology and Fuel in year 2050

IPCC's B2 scenario has 'dynamics-as-usual': e.g. GMM uses

• avg. ann. income growth (1990 - 2050): 2.8%; historical (1950 - 1990): 2.2%

• avg. ann. km-demand growth (2000 - 2050): 2.2% car transport, 2.9% air transport

Energy demands derived from the IPCC's B2 scenario (updated with Global Insight data): B2 scenario based on 'dynamics-as-usual': future rates of change (e.g. technological change, energy intensity) do not depart substantially from historical experience

- population stabilizes at about 10 billion by 2100
- · largest increase in population and in GDP in the developing world

energy = $\frac{\text{energy}}{\text{gdp}} \frac{\text{gdp}}{\text{popl.}}$ popl.

Central Case: Energy Demand, Car Travel Demand

Car travel demand (vehicle-km per year) is calibrated to year 2000 statistics, and projected using the v-km growth rates from the IEA/SMP model*.

*IEA/SMP Model Documentation and Reference Case Projection; L. Fulton (IEA) and G. Eads (CRA); July 2004, p.34

Carbon-Emission-Tax Proxy

- Biofuels: have no emissions in GMM
- CCS potential until 2100: approx. 2500 Gt CO₂

* LAFM: Latin America, Africa, Middle East "\$" refers to US dollar with base year 2000

relative targets:

absolute targets:

- EU-29: Directive 2009/28/EC until 2020
- North America: USA Energy Independence and Security Act 2007 (until 2022)
- Asia: China NDRC targets (until 2020)
- LAFM: projection of historical production in Brazil

- Central Case: Conventional oil & gas in line with IEA and BGR estimates, Some unconventional oil & gas reserves and resources also included
- Low Resources:
- Gas: unconventional resources are assumed to be unavailable
 Oil: no unconventional reserves or resources, reduced conventional resources (total approx. 50% less than Central Case, guided by estimates of the EWG, but still higher)

Category I: Proven reserves (discovered and high probability that they can be extracted)Category II: Estimated additional reserves (additional volumes that are thought to exist and to be extractable, but with higher costs)

Category III: Additional speculative resources (resources are occurrences with less-certain geological assurance and/or with doubtful economic feasibility)

Category IV: Enhanced recovery of existing reserves (e.g. by solvents, steam injection)

Category V: Unconventional reserves (oil shales, tar sands, bitumen, and heavy oils)

Category VI: Unconventional resources

Rogner 1997: An Assessment of World Hydrocarbon Resources. Annu. Rev. Energy Environ. 1997. 22:217-62

Production of Oil under different scenarios

No policy assumes the same resources as Central case, but without any policy measures

- The applied policy measures have a minor impact on production before 2040/2050. (increase in aviation*, decrease in car transport)
- Oil production peaks in 2030 or before in all scenarios (depletion of cheap reserves and resources)
 - In Low Resources Scenario (around ~1500 billion bbl), production is already declining from 2000.

* some studies see potential for biofuel: Air Transport Action Group, Beginner's Guide to Aviation Biofuels, 2009, 50% will be reached by 2040

- Coal Gasification uses CCS
- Nuclear technologies: high-pressure / hightemperature electrolysis, and chemical heat cycles
- The major share of hydrogen is used in non-car surface transport

- Alternative fuels derived from coal play a transitory role and are phased out due to the climate policy.
- Biofuels become cost competitive especially due to the assumed carbon price, with second generation being cost-competitive.

CNG: compressed natural gas

Car Fuels

PAUL SCHERRER INSTITU

- Methanol, Ethanol: bio-methanol and bio-ethanol; may be used as a blend
- **Bio-SNG:** biogas, i.e., bio-synthetic gas from biomass, produced e.g. by fermentation of manure or waste, or by gasification of wood
- **Biofuel (Diesel):** biodiesel (FAME), produced e.g. from oil crops or by pyrolysis from wood; and bio-F-T-diesel, e.g. produced from Bio-SNG
- Hydrogen: hydrogen from fossil and from renewable sources
- Electricity: Electricity from the electricity grid. In GMM, an electricity demand from cars is spread equally over time, so night-time charging is supported (with simplification, see Open Issues).

Policy Scenario

- Other surface & aviation: biofuels are not cost-effective, efficiency improvements limited → emissions increase in "Tollway"
- Developing world: increase in car-emissions (due to large increase in demand) is partially offset by mid- and long-term efficiency improvements