

Effects of economic crises and the cost of capital on technology choice

Adriana Marcucci and Hal Turton Energy Economics Group, Paul Scherrer Institut

International Energy Workshop

Stockholm, 21st June 2010

- 2 MERGE-ETL model
- Scenarios analysis

2 MERGE-ETL model

MERGE-ETL model

3 Scenarios analysis

- Scenario description
- BAU set
- 550ppm set

- \rightarrow Reduction in energy demand (Blandford et. al, 2009)
- \rightarrow Lower energy investments (WEO 2009)

- \rightarrow Reduction in energy demand (Blandford et. al, 2009)
- \rightarrow Lower energy investments (WEO 2009)
- $\rightarrow\,$ Financial crisis $\rightarrow\,$ Increase in the cost of capital

- \rightarrow Reduction in energy demand (Blandford et. al, 2009)
- \rightarrow Lower energy investments (WEO 2009)
- $\rightarrow\,$ Financial crisis $\rightarrow\,$ Increase in the cost of capital
 - Real or perceived increase in risk
 - Limited finance availability

- \rightarrow Reduction in energy demand (Blandford et. al, 2009)
- \rightarrow Lower energy investments (WEO 2009)
- $\rightarrow\,$ Financial crisis $\rightarrow\,$ Increase in the cost of capital
 - Real or perceived increase in risk
 - Limited finance availability

Scenario analysis of cost of capital in energy sector

- $\rightarrow\,$ Effects on optimal technology decisions
- $\rightarrow~$ Changes to electricity demand
- $\rightarrow\,$ Effectiveness of climate policies (carbon-free generation technologies)

- \rightarrow Reduction in energy demand (Blandford et. al, 2009)
- \rightarrow Lower energy investments (WEO 2009)
- $\rightarrow\,$ Financial crisis $\rightarrow\,$ Increase in the cost of capital
 - Real or perceived increase in risk
 - Limited finance availability

Scenario analysis of cost of capital in energy sector

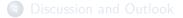
- $\rightarrow\,$ Effects on optimal technology decisions
- $\rightarrow~$ Changes to electricity demand
- $\rightarrow\,$ Effectiveness of climate policies (carbon-free generation technologies)

$\rightarrow\,$ Technology innovation and climate stabilization

Scenarios analysis

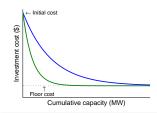
MERGE-ETL model MERGE-ETL model

3 Scenarios analysis


- Scenario description
- BAU set
- 550ppm set

3 Scenarios analysis

- Scenario description
- BAU set
- 550ppm set



- Intertemporal general equilibrium model
- Determines optimal technological choices to provide energy services (max. utility function)
- 9 regions: USA, WEUR, Japan, CANZ, EEFSU, China, India, Middle East and Rest of the World.

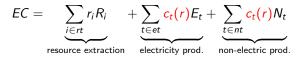
- Intertemporal general equilibrium model
- Determines optimal technological choices to provide energy services (max. utility function)
- 9 regions: USA, WEUR, Japan, CANZ, EEFSU, China, India, Middle East and Rest of the World.

Endogenous technology learning

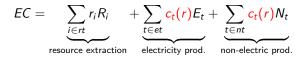
- Accumulation knowledge \rightarrow declining investment costs
- Learning curve: wind, solar, ccs technologies

MERGE-ETL model

Scenarios analysis 00 00000 00000

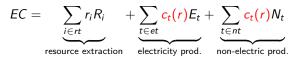


• Social discount rate \neq interest rate (*r*)



- Social discount rate \neq interest rate (*r*)
- Output: Y = I + C + EC

- Social discount rate \neq interest rate (*r*)
- Output: Y = I + C + EC
 - \rightarrow Energy cost:



- Social discount rate \neq interest rate (*r*)
- Output: Y = I + C + EC
 - \rightarrow Energy cost:

 \rightarrow Unit cost: $c_t(r) = \text{CRF}_t(r) \cdot inv_t + \text{FOM}_t + \text{VOM}_t$

- Social discount rate \neq interest rate (*r*)
- Output: Y = I + C + EC
 - \rightarrow Energy cost:

- \rightarrow Unit cost: $c_t(r) = \text{CRF}_t(r) \cdot inv_t + \text{FOM}_t + \text{VOM}_t$
- Revenue from higher interest rates is recycled:

$$rev = \sum_{t \in et} [c_t(r) - c_t(5\%)] E_t + \sum_{t \in nt} [c_t(r) - c_t(5\%)] N_t$$
$$Y + rev = I + C + EC$$

Scenarios analysi: 00 00000 0000

2 MERGE-ETL model

MERGE-ETL model

Scenarios analysis

- Scenario description
- BAU set
- 550ppm set

MERGE-ETL model MERGE-ETL model

Scenarios analysis

Scenario description

- BAU set
- 550ppm set

Business as usual (BAU) set

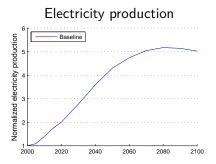
- No climate policy
- Scenarios: Baseline (5%), 7%, 10% and 12%

550ppm set

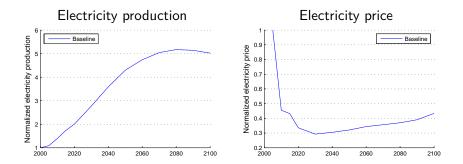
- Atmospheric GHG concentration = 550 ppm CO_2
- Scenarios: Baseline (5%), 7%, 10% and 12%

2 MERGE-ETL model

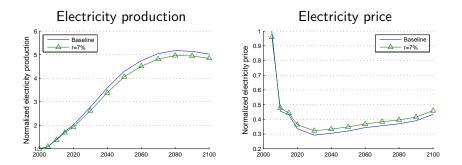
MERGE-ETL model

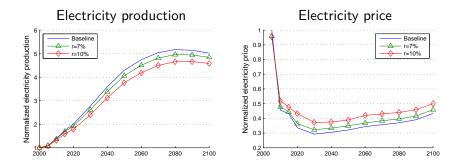

3 Scenarios analysis

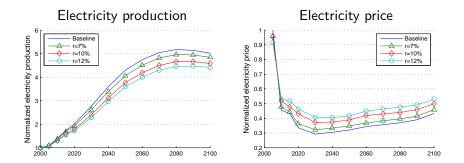
Scenario description

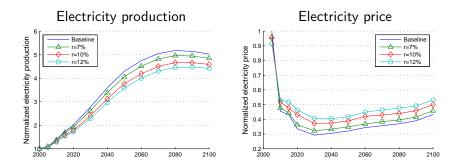

BAU set

550ppm set

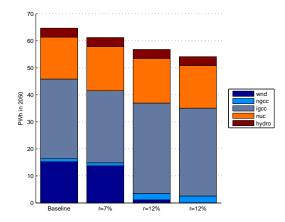





Scenarios analysis


Scenarios analysis

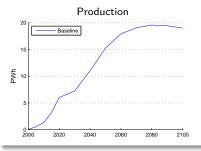
Scenarios analysis

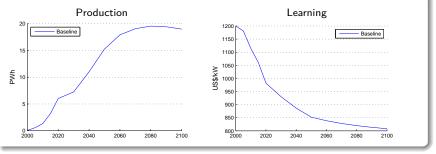


 \uparrow cost of capital \rightarrow \uparrow price \rightarrow \downarrow demand \rightarrow \downarrow production

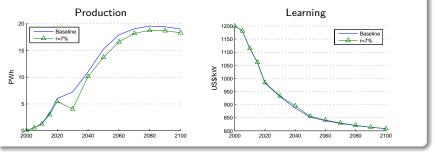
Scenarios analysis

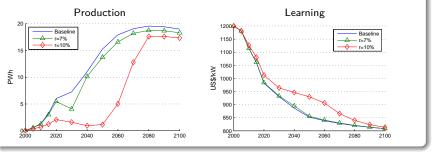
Electricity production 2050

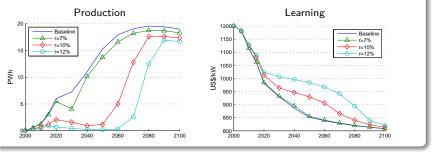


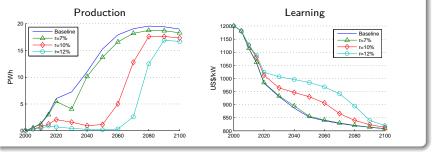

MERGE-ETL m

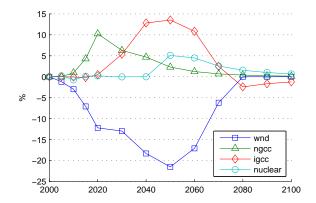
Scenarios analysis











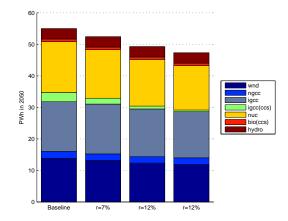
 $\label{eq:cost} \begin{array}{ll} \uparrow \mbox{ cost of capital } & \to \mbox{ delayed deployment capital intensive technologies } \\ & \to \mbox{ slow rate technological improvement } \\ & \to \mbox{ increase in the deployment of NGCC and IGCC } \end{array}$

Scenarios analysis

Comparison shares baseline and 10% scenario

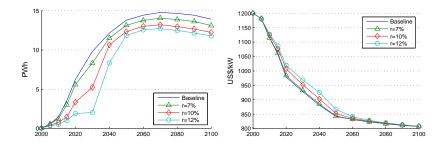
2 MERGE-ETL model

MERGE-ETL model


Scenarios analysis

- Scenario description
- BAU set
- 550ppm set

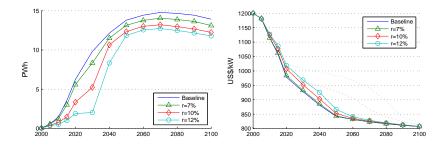
Electricity production 2050


MERGE-ETL m

Scenarios analysis

Technology deployment and learning

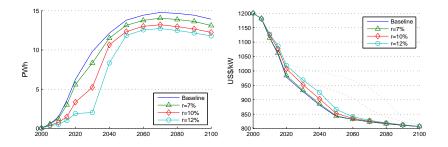
Wind technology



Scenarios analysis

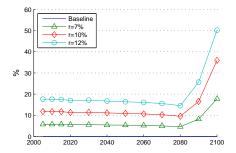
Technology deployment and learning

Wind technology



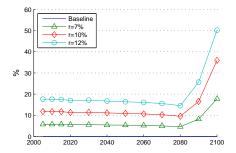
Scenarios analysis

Technology deployment and learning


Wind technology

 $\label{eq:cost} \begin{array}{ll} \uparrow \mbox{ cost of capital } & \rightarrow \mbox{ less impact on technology choice with climate policy} \\ & \rightarrow \mbox{ Wind, solar PV and technologies with CCS are still deployed} \end{array}$

Carbon price



Scenarios analysis

Carbon price

 \uparrow cost of capital $\quad \rightarrow \uparrow$ carbon price

MERGE-ETL mod 000 Scenarios analysis

Economic growth and energy supply

MERGE-ETL model MERGE-ETL model

3 Scenarios analysis

- Scenario description
- BAU set
- 550ppm set

Important linkages between the cost of capital, technology deployment and climate change mitigation.

Important linkages between the cost of capital, technology deployment and climate change mitigation.

• Electricity demand decreases with higher costs of capital. Important role for energy efficiency

Important linkages between the cost of capital, technology deployment and climate change mitigation.

- Electricity demand decreases with higher costs of capital. Important role for energy efficiency
- Deployment of capital-intensive technologies is likely to be delayed when the cost of capital is higher. Opportunities for learning-by-doing

Important linkages between the cost of capital, technology deployment and climate change mitigation.

- Electricity demand decreases with higher costs of capital. Important role for energy efficiency
- Deployment of capital-intensive technologies is likely to be delayed when the cost of capital is higher. Opportunities for learning-by-doing
- Need for a stronger climate policy (or a higher carbon price)
 - $\rightarrow\,$ Higher economic costs for climate stabilization $\leftrightarrow\,$ Importance of supporting financial stability
 - $\rightarrow\,$ Reduction of incentives for developing countries to join global mitigation regimes

Scenarios analysi 00 00000 0000

• Cost of capital changes just in the energy supply sector

- Cost of capital changes just in the energy supply sector
- Cost of capital remains high for the long term. Recovery after the financial crisis

- Cost of capital changes just in the energy supply sector
- Cost of capital remains high for the long term. Recovery after the financial crisis
- A financial crisis is likely to affect differently the different regions of the world. Scenarios with different cost of capital

Thank you for your attention