

Assessment of Market Penetration Potential of Hydrogen Fuel Cell Vehicles - A Study Using an Optimization Model

Daniel A. Krzyzanowski, Socrates Kypreos, Leonardo Barreto Energy Economics Group, Paul Scherrer Institute, Villigen Switzerland

CORS/Optimization Days 2006, "Energy and Environmental issues"

Overview

Setup of the issue – the transportation sector

Tools

Sensitivity analysis

Results

Conclusions

Setup

The technology

Oil prices

Security of oil supply

Environmental burdes

Expensive, relies on oil supplies and polluts.

Is there another way?

Tools

Stand alone

- 1 region
- 2000-2100
- only personal vehicles

Full scale

- 5 regions
- 2000-2050
- Personal vehicles, buses and heavy trucks

Sensitivity analysis

Parameter	Steady state	Variable
Price of fuel cells	600 US\$/kW	2001000 US\$/kW
Learning rate	15%	220%
Initial number of vehicles	75,000	75,000500,000 vehicles
Trend in oil price	+2.5% /decade	-8% +7%/decade
Discount rates (fuel cells)	5%	2%5%
Discount rates (H ₂ infrastructure)	5%	2%5%
External costs – CO ₂	-	15250 US\$/ton CO ₂
External costs – NOx	-	1,00010,000 US\$/ton NOx
External costs – SOx	-	1,00010,000 US\$/ton SOx
Demonstration vehicles	-	12,500150,000 vehicles
Cash-back promotions	-	10100 US\$/kW

Results(1): Fuel cell price vs. Learning rate

Results(2): Fuel cell price vs. Oil price trends

Results(3): Demonstration projects

Conclusions

Key factors:

Price of fuel cells

Learning rates

Demonstration projects could act as a stimulating policy instruments

Full fledge infrastructure in long run

Factors of lesser importance:

Oil price trends

Environmental policies (CO₂, NOx, SOx)

Infrastructure development

ETL (endogenous technological learning)

