

MEG Lepton Flavor Violation Search: Challenges and Solutions

Stefan Ritt Paul Scherrer Institute, Switzerland

- Motivation to search for $\mu \rightarrow e \gamma$
- Challenges:
 - Beam, Detectors, Electronics
- Status and Outlook

Motivation

Why should we search for $\mu \rightarrow e \; \gamma \; ?$

March 9th, 2009

- The SM has been proven to be extremely successful since 1970's
 - Simplicity (6 quarks explain >40 mesons and baryons)
 - Explains all interactions in current accelerator particle physics
 - Predicted many particles (most prominent *W*, *Z*)
- Limitations of the SM
 - Currently contains 19 (+10) free parameters such as particle (neutrino) masses
 - Does not explain cosmological observation such as Dark Matter and Matter/Antimatter Asymmetry

Today's goal is to look for physics beyond the standard model

The Muon

PAUL SCHERRER INSTITUT

$$\mu^{+} \rightarrow e^{+} v_{e} v_{\mu} \approx 100\%$$

$$L_{e}^{:} \quad 0 = -1 + 1 \quad 0$$

$$L_{\mu}^{:} \quad -1 = 0 \quad 0 \quad -1$$

$$\mu^{+} \rightarrow e^{+} v_{e} v_{\mu} \gamma \qquad 0.014$$

$$L_{e}^{:} \quad 0 = -1 + 1 \quad 0 \quad 0$$

$$L_{\mu}^{:} \quad -1 = 0 \quad 0 \quad -1 \quad 0$$

$$\mu^{+} \rightarrow e^{+} \gamma \qquad <10^{-11}$$

$$L_{e}^{:} \quad 0 \neq -1 \quad 0$$

$$L_{\mu}^{:} \quad -1 \neq 0 \quad 0$$

$$\uparrow$$
Violates Lepton Number Conservation!

- LFV is forbidden in the SM, but possible in SUSY (and many other extensions to the SM) though loop diagrams (→ heavy virtual SUSY particles)
- If $\mu \twoheadrightarrow e \ \gamma$ is found, new physics beyond the SM is found
- Current exp. limit is 10⁻¹¹, predictions are around 10⁻¹² ... 10⁻¹⁴
- Goal of 10⁻¹³ is a big experimental challenge!

Current SUSY predictions

J. Hisano et al., Phys. Lett. B391 (1997) 341
 MEGA collaboration, hep-ex/9905013

W. Buchmueller, DESY, priv. comm.

PAUL SCHERRER INSTITUT

History of LFV searches

cosmic u • Long history dating back to 1947!₁₀₋₁ 10-2 • Best present limits: $\mu \rightarrow e \gamma$ 10-3 $\mu A \rightarrow e A$ • 1.2 x 10⁻¹¹ (MEGA) $u \rightarrow eee$ 10-4 • $\mu Ti \rightarrow eTi < 7 \times 10^{-13} \text{ (SINDRUM II)}_{10^{-5}}$ stopped π 10-6 • $\mu \rightarrow eee < 1 \times 10^{-12}$ (SINDRUM II) 10-7 • MEG Experiment aims at 10⁻¹³ μ beams 10-6 stopped μ 10⁻⁹ Improvements linked to advance 10-10 in technology 10-11 10-12 SUSY SU(5) **10**⁻¹³ $\mathsf{BR}(\mu \rightarrow e \gamma) = 10^{-13}$ 10-14 MEG $\mu Ti \rightarrow eTi = 4x10^{-16}$ 10-15 Mu2e 10-16 $BR(\mu \rightarrow eee) = 6x10^{-16}$ 1980 1990 2000 1940 1950 1960 1970 2010 2020

Experimental Method

How to detect $\mu \rightarrow e \gamma$?

Michel Decay (~100%)

"Accidental" Background

Aimed resolutions: Aimed experiment parameters: $3 \times 10^7 / s$ Ν_μ **FWHM** 2×10^7 s (~50 weeks) ΔE_{e} 0.8% $\Omega/4\pi$ 0.09 ΔE_{v} 4.3% 0.90 ε_e $\Delta \theta_{e\gamma}$ 18 mrad 0.60 \mathcal{E}_{v} 180 ps Δt_{ev} 0.70 ϵ_{sel} Single event sensitivity $(N_{\mu} \bullet T \bullet \Omega/4\pi \bullet \epsilon_{e} \bullet \epsilon_{v} \bullet \epsilon_{sel})^{-1} = 3.6 \times 10^{-14}$ Prompt Background $B_{pr} \approx 10^{-17}$ Accidental Background $B_{acc} \propto \Delta E_e \cdot \Delta t_{e\gamma} \cdot (\Delta E_{\gamma})^2 \cdot (\Delta \theta_{e\gamma})^2 \rightarrow 4 \times 10^{-14}$ 90% C.L. Sensitivity $\rightarrow 1.3 \times 10^{-13}$

March 9th, 2009

~70 People (40 FTEs) from five countries

PSI Proton Accelerator

Challenge 1: Muon Beam

How to get $10^8 \mu$ /sec on a small stopping target?

March 9th, 2009

Muon Beam Structure

Muon beam structure differs for different accelerators

Results of beam line optimization

Challenge 2: Calorimeter

Photon Detectors (@ 50 MeV)

- Anorganic crystals (NaI, CsI):
 - Good efficiency, good energy resolution, poor position resolution, poor homogeneity
- Liquid Noble Gases:
 - No crystal boundaries
 - Good efficiency, resolutions

25 cm CsI

Density	3 g/cm ³
Melting/boiling point	161 K / 165 k
Radiation length	2.77 cm
Decay time	45 ns
Absorption length	> 100 cm
Refractive index	1.57

Liquid Xenon:

Liquid Xenon Calorimeter

- Calorimeter: Measure γ Energy, Position and Time
- Liquid Xenon has high Z and homogeneity
- ~900 I (3t) Xenon with ~850 PMTs
- Cryogenics required: -120°C ... -108°
- Extremely high purity necessary: 1 ppm H₂O absorbs 90% of light
- Currently largest LXe detector in the world: Lots of pioneering work necessary

- Light is distributed over many PMTs
- Weighted mean of PMTs on front face \rightarrow dx ~ 10 mm FWHM
- Broadness of distribution \rightarrow dz ~ 16 mm FWHM
- Timing resolution

 → dt ~ 100 ps FWHM
- Energy resolution
 ~ 4.3% FWHM
 depends on light attenuation in LXe

- Use "Monte Carlo" simulation (GEANT) to carefully study detector
- Placement of PMTs were optimized according to MC results

Currently being assembled, will go into operation summer '07

Calorimeter Calibrations

March 9th, 2009

Calorimeter Light Monitoring

Challenge 2: Spectrometer

- Measures position, time and curvature of positron tracks
- Cathode foil has three segments in a vernier pattern → Signal ratio on vernier strips to determine coordinate along wire

Final Spectrometer

Challenge 3: Timing Counter

Timing Counter Location

PAUL SCHERRER INSTITUT

- Staves along beam axis for timing measurement
- Curved fibers with APD readout for z-position
- Resolution 90 ps FWHM measured at e⁻ - beam
- Resolution in experiment: 140-200 ps FWHM preliminary

PAUL SCHERRER INSTITUT

Exp./ Lab	Author	Year	∆E _e /E _e %FWHM	ΔE _γ /E _γ %FWHM	∆t _{eγ} (ns)	Δθ _{eγ} (mrad)	Inst. Stop rate (s ⁻¹)	Duty cycle (%)	Result
SIN (PSI)	A. Van der Schaaf	1977	8.7	9.3	1.4	-	(46) x 10 ⁵	100	< 1.0 × 10 ⁻⁹
TRIUMF	P. Depommier	1977	10	8.7	6.7	-	2 x 10⁵	100	< 3.6 × 10 ⁻⁹
LANL	W.W. Kinnison	1979	8.8	8	1.9	37	2.4 x 10⁵	6.4	< 1.7 × 10 ⁻¹⁰
Crystal Box	R.D. Bolton	1986	8	8	1.3	87	4 x 10⁵	(69)	< 4.9 × 10 ⁻¹¹
MEGA	M.L. Brooks	1999	1.2	4.5	1.6	17	2.5 x 10 ⁸	(67)	< 1.2 × 10 ⁻¹¹
MEG		2008	0.8	4.3	0.18	18	3 x 10 ⁷	100	~ 10 ⁻¹³

March 9th, 2009

Challenge 4: Electronics

How to do effective triggering?

How to deal with pile-up?

How to measure timing for ~1000 channels with <100 ps accuracy?

Digital Pulse Shape Analysis

Complete Trigger System

PAUL SCHERRER INSTITUT

Trigger Mix

TRGDAQRateMeter							
Proton Currer	t Total tri	gger rate	Live Time	Tot	al Time	Live Time (%)	
1988.4 μ Am	p 6.0	96 Hz	3.738 sec	4.	593 sec	81.382	
	#Ev(#DAQ)	EvRate(DAC	Q Rate,%)	#Ev(#DAQ) EvR	ate(DAQ Rate,%)	
ld0 MuEGamma	32 (26)	7.0Hz(5.7Hz,9	92.9) Id1	6 Michel	1.3e+06 (0)	2.8e+05Hz(0.0Hz,0.0)	
Id1 MEG LowQ	106 (0)	23.1Hz(0.0Hz	,0.0) Id1	7 DC Trackout	3.6e+06 (0)	7.8e+05Hz(0.0Hz,0.0)	
Id2 MEG WidAn	g 170 (0)	37.0Hz(0.0Hz	,0.0) Id1	8 DC Track	3.7e+06 (0)	8.1e+05Hz(0.0Hz,0.0)	
Id3 MEG WidTim	ie 58 (0)	12.6Hz(0.0Hz	,0.0) Id1	9 DC Cosm	0 (0)	0.0Hz(0.0Hz,0.0)	
Id4 Rad NarTime	326 (0)	71.0Hz(0.0Hz	,0.0) Id2	0 DC single	6.4e+06 (0)	1.4e+06Hz(0.0Hz,0.0)	
Id5 Rad WidTim	e 614 (0)	133.7Hz(0.0Hz	.,0.0) Id2	1 Cosm Alone	0 (0)	0.0Hz(0.0Hz,0.0)	
ld6 Pi0	0 (0)	0.0Hz(0.0Hz,	.0.0) Id2	2 TC Alone	5.0e+06 (0)	1.1e+06Hz(0.0Hz,0.0)	
ld7 Pi0 NPrSh	0 (0)	0.0Hz(0.0Hz,	.0.0) Id2	3 CR Coinc	0 (0)	0.0Hz(0.0Hz,0.0)	
ld8 Nal	2 (0)	0.4Hz(0.0Hz,	.0.0) Id2	4 TC Pair	4.6e+05 (0)	1.0e+05Hz(0.0Hz,0.0)	
ld9 LXe HighQ	1.2e+04 (1)	2.6e+03Hz(0.2H	Iz,3.6) Id2	5 Nal Cosmic	0 (0)	0.0Hz(0.0Hz,0.0)	
ld10 LXe LowQ	4.9e+04 (0)	1.1e+04Hz(0.0H	lz,0.0) Id2	6 APD Single	7.2e+06 (0)	1.6e+06Hz(0.0Hz,0.0)	
ld11 CW Bo	1.1e+04 (0)	2.4e+03Hz(0.0H	lz,0.0) Id2	7 LXe Cosmic	856 (1)	186.4Hz(0.2Hz,3.6)	
ld12 Alpha	3.9e+04 (0)	8.5e+03Hz(0.0H	Iz,0.0) UN	USED	32 (0)	7.0Hz(0.0Hz,0.0)	
Id13 Laser	0 (0)	0.0Hz(0.0Hz,	.0.0) UN	USED	106 (0)	23.1Hz(0.0Hz,0.0)	
Id14 LED	4 (0)	0.9Hz(0.0Hz,	.0.0) UN	USED	0 (0)	0.0Hz(0.0Hz,0.0)	
Id15 NeutronNi	0 (0)	0.0Hz(0.0Hz,	0.0) Id3	1 Pedestal	4.6e+03 (0)	1.0e+03Hz(0.0Hz,0.0)	

How to digitize signals?

"Time stretcher" GHz \rightarrow MHz

The DRS Chip

- Development of SCA chip based on experience in $\pi\beta$ experiment
- Took four iterations to produce a flexible and powerful chip
- Goal was to design a chip which can be used in many experiments

DRS4

- Fabricated in 0.25 μm 1P5M MMC process (UMC), 5 x 5 mm2, radiation hard
- 8+1 ch. each 1024 bins,
 4 ch. 2048, ..., 1 ch. 8192
- Differential inputs/ outputs
- Sampling speed
 500 MHz ... 6 GHz
- On-chip PLL stabilization
- Readout speed
 30 MHz, multiplexed
 or in parallel

On-line waveform display

PAUL SCHERRER INSTITUT

Pulse shape discrimination

Example: α/γ source in liquid xenon detector (or: γ/p in air shower)

Coherent noise

- Found some coherent low frequency (~MHz) noise
- Energy resolution dramatically improved by properly subtracting the sinusoidal background
- Usage of "dead" channels for baseline estimation

600

500

400

300 200 100

0

-100 -200 -300

Systematic Jitter [ps]

Fixed Pattern Jitter Results

- TD_i typically ~50 ps RMS @ 5 GHz
 - TI_i goes up to ~600 ps
 - Jitter is mostly constant over time,
 → measured and corrected
 - Residual random jitter 3-4 ps RMS

100 200 300 400 500 600 700 800 9001000

Channel 5

Channel 6

Experiments using DRS chip

PAUL SCHERRER INSTITUT

Availability

- DRS4 can be obtained from PSI on a "non-profit" basis
 - Delivery "as-is"
 - Costs ~ 10-15 USD/channel
- USB Evaluation board as reference design
- VME boards from industry in 2009

32-channel 65 MHz/12bit digitizer "boosted" by DRS4 chip to 5 GHz

Challenge 5: Monitoring

Challenge Gist Dudot How to control For Market (TV, Temperatures, Pressures)? For Mge 7: Data Analysis How to deal with 130 TB of data ext

Challenge 8: ...

Status and Outlook

Where are we, where do we go?

PAUL SCHERRER INSTITUT

CAUTION: All 2008 numbers are provisional

Efficiencies

Still lots of things to learn from the data

- Blue numbers likely to change - Grey numbers may vanish

(%)	"Goal"	2008 Provisional Lower Limits	2009 Provisional Prospects	
Gamma	> 40	$> 50 \times (65 \times 85)$	> 50 x 90	
e+	e+ 65		85 x 50	
Trigger	100	100 x 99 x 80	> 99	
Selection	$90^4 = 66$	$90^3 \times 95 = 69$	69	
DAQ	(> 90)	> 80 x 93	> 90 x 99	
Calibration Run etc	(> 95)	~70	90	
Running Time (week)	100*	11.5**	11.5	
Single Event 0.5		< 30 - 50	< 3 - 5	
	* 1 week = 4x10 ⁵ sec (66%)	** CEX runs not included		

Current Resolutions

CAUTION: All 2008 numbers are provisional

Resolutions

Resolutions are improving as we understand the detectors better.

(in sigma)	"Goal"	2008 Provisional	2009 Provisional Prospects	
Gamma Energy (%)	1.2 - 1.5	< 2.3	< 1.7	
Gamma Timing (ps)	65	< 100*	< 80	
Gamma Position (mm)	2 - 4	5 - 6.5	5	
e+ Momentum (%)	0.35	1.5 - 2.0	0.7 - 0.8	
e+ Timing (ps)	45	< 60 - 90	60	
e+ Angle (mrad)	4.5	9 - 18	11	
mu Decay Point (mm)	0.9	3 - 4	2	
Gamma - e+ Timing (ps)	80	150	100	
Background (10 ⁻¹³)	0.1 - 0.3	_	< 0.6 - 3	

- 11.5 weeks of data taking in 2008 (130 TB)
- Currently doing blind analysis

Radiative Muon Decay

- This decay is a benchmark for the whole detector
- Branching ratio 1.4%
- Decays clearly visible in high rate environment

"Polarized" MEG

- A = +1
- B ($\mu^+ \rightarrow e^+ \gamma$) = 1 x 10⁻¹²
- $1 \times 10^8 \mu^+/s$
- 5 x 10⁷ s beam time (2 years)
- $P_{\mu} = 0.97$

Conclusions

- Many challenges faced in the MEG Experiment, solutions have been worked out
- Some technologies might be interesting for other experiment
 - Liquid Xenon Calorimetery
 - Fast Waveform Digitizing using the DRS chip
- MEG just started taking data, so expect exciting results in the upcoming years

Stay Tuned!

http://meg.psi.ch

Backup Slides

Transport 10⁸ μ^+ /s to stopping target inside detector with minimal background

MC Simulation of full detector

March 9th, 2009

Positron Detection System

- 16 radial DCs to measure positron tracks
- Extremely low mass
- He:C₂H₆ gas mixture
- Scintillation counter for precise timing

Beam induced background

10⁸ μ /s produce 10⁸ e⁺/s produce 10⁸ γ /s

Complete DAQ System

