THE WaveDAQ SYSTEM FOR THE MEG II UPGRADE

Stefan Ritt, Paul Scherrer Institute, Switzerland
Luca Galli, Fabio Morsani, Donato Nicolò, INFN Pisa, Italy

28 May 2015
13th Pisa Meeting on Advanced Detectors
DRS4 Chip

- Switched Capacitor Array (Analog Memory) developed at PSI
- 5 GSPS / 11.5 bits SNR, 9 channels on 5 mm x 5 mm chip, 40 mW / chn.
- Used at ~200 locations worldwide
- 2012: “Gigahertz Waveform Sampling: An Overview and Outlook”

- Pile-up rejection \(O(~10 \text{ ns})\)
- Time measurement \(O(10 \text{ ps})\)
- Charge measurement \(O(0.1\%)\)
MEG & MEG II

MEG Experiment 1999-2013
- Separated DAQ & Trigger
- 3000 Channels DRS4
 (0.8 GSPS / 1.6 GSPS)
- 1000 Channels Trigger
 (100 MSPS)
- 5 Racks

MEG II Experiment 2014-
- 9000 Channels
- Same rack space
 ➔ Combine
 DAQ & Trigger

S2: M. de Gerone: An extreme high resolution Timing Counter for the MEG II Experiment
S2P: M. Simonetta: Test and characterization of SiPMs intended as detector for the MEG timing counter
S5P: D. Nicolò: An FPGA-based trigger for the MEG II Experiment
S5P: A. Pepino: A high performance Front End Electronics for Drift Chamber readout in the MEG II Experiment
S7P: M. Grassi: A new cylindrical drift chamber for the MEG II Experiment
S7P: G. Rutar: A Dedicated Calibration Tool for the MEG and MEG II Positron Spectrometer
S7P: L. Galli: MEG II drift chamber prototype characterization with the silicon based cosmic ray tracker at INFN Pisa
S7P: M. Venturini: Ageing tests for the MEG II drift chamber
S9P: D. Nicolò: A liquid hydrogen target for the calibration of the MEG and MEG II liquid xenon calorimeter
S9P: K. Ieki: Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs

28 May 2015
13th Pisa Meeting on Advanced Detectors
Crate Options

<table>
<thead>
<tr>
<th>Feature</th>
<th>VME</th>
<th>ATCA</th>
<th>???</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer speed (O(100 \text{ MB/s}))</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dual-Star Topology with Gbit links</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Shelf management</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Fast trigger distribution</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Low-jitter precision clock (O(\text{ps}))</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>200 V SiPM biasing</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>< 2000 EUR per crate including power</td>
<td>✗</td>
<td>✗</td>
<td>✔</td>
</tr>
</tbody>
</table>

WaveDAQ System

- Fans blow from back to front
- Crate Management Board:
 - Power supply 24V / 300W
 - Fan / Temp. control
 - Power cycle each slot
 - FPGA Firmware upload
 - Ethernet remote control
- Data Concentrator Board
- Trigger Concentrator Board
- 16 WaveDREAM boards (256 channels)
WaveDREAM Board (WDB)

Drs4 based REAdout Module
Preamp

Gain	$BW_{3\text{db}}$ (MHz)	Noise (mV)
1 | 940 | 0.37
10 | 880 | 0.40
100 | 300 | 1.2
100 | 500 | 1.7
100 | 800 | 3.3

Different compensations

3.3 mV at output = 33 μV at input
WaveDREAM2 HV

~ 5 EUR / channel

+1...+85 V

+/- 1mV
Ripple < 10 µV
Temperature Sensor Extension

DESCRIPTION
The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of -55°C to +125°C and is accurate to ±0.5°C over the range of -10°C to +85°C. In addition, the DS18B20 can derive power directly from the data line (“parasite power”), eliminating the need for an external power supply.

Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18B20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls, temperature monitoring systems inside buildings, equipment, machinery, and process monitoring and control systems.

FEATURES
- Unique 1-Wire® Interface Requires Only One Port Pin for Communication
- Each Device Has a Unique 64-Bit Serial Code
- accuracy ±0.5°C, 3 EUR / sensor
- 1-16 sensors per WD2 board with only one coaxial cable
- Automatic HV adjustments with temperature changes

DS18B20 Programmable Resolution 1-Wire Digital Thermometer
- User-Definable Nonvolatile (NV) Alarm Settings
- Alarm Search Command Identifies and Addresses Devices Whose Temperature is Outside Programmed Limits (Temperature Alarm Condition)
- Available in 8-Pin SO (150 mils), 8-Pin µSOP, and 3-Pin TO-92 Packages
- Software Compatible with the DS1822
- Applications Include Thermostatic Controls, Industrial Systems, Consumer Products, Thermometers, or Any Thermally Sensitive System
Trigger Concentrator Board (TCB)

- Receives serial links (SERDES) from WD boards
- Computes crate local trigger
- Send trigger via serial links to global trigger in dedicated crate
- FCI Densishield cables
Ancillary system

- Contains master clock
- Distribute clock (jitter < 12 ps measured)
- Distribute trigger
- 4 diff. pairs for
 - Clock
 - Trigger
 - Busy
 - (Sync)

Clock 100 MHz

Trigger

Busy

Digitization and Readout

optional: Error

Spare (Sync)
DAQ Concentrator Board (DCB)

- Receive Gbit links from WDB
- Use SERDES instead GTX (lower latency)
- Waveform preprocessing in Zynq CPU
- Output via Gbit Ethernet (10 Gbit optional)
- Board under design
- Tests with Zed-Board and “Backplane Simulator”
Half Height Backplane
SPI configuration

```
0 1 ... 7 8 ... 14 15

MOSI / MISO / SCLK

SSx

DCB  TCB  CMB

10 GBit Ethernet

SPI Master
SCLK MOSI MISO SS

SPI Slave
SCLK MOSI MISO SS

SS

SCLK

MSB LSB MSB

MOSI R/W A6 A5 A4 A3 A2 A1 A0
D31 D30 D29 D28 D27 D26 D25 D24 D21 D20

... LSB
```
Gbit links for DAQ & Trigger

0 1 ... 7 8 ... 14 15

3 x GBit 8 x GBit

10 GBit Ethernet

Event Builder PC Global Trigger

DCB TCB CMB
Trigger Bus & HV

0 1 ... 7 8 ... 14 15

Trigger Sync Busy

DCB TCB

Global Trigger

High Voltage

CMB
WaveDAQ Clock Distribution

Goal: < 5 ps clock jitter at system level
Minimal System

Power-over-Ethernet
One-crate system

Up to 256 Channels

Detector

Gbit Ethernet

Power Supply 24V

220 V
MEG II System

35 crates x 256 channels = 9000 channels
WaveDAQ Performance

- Trigger resolution 10 ns (100 MHz clock)
- Trigger bandwidth 8 Gbit / s
- Trigger latency <380 ns *) (9000 channels)

- DAQ bandwidth 2 Gbit / s
- DAQ time measurement 10 ps *)
- DAQ dead time 3 - 35 μs / event

- MEG II: 7 x 10^7 μ/s, DAQ eff. > 95% @ 30 Hz *)

*) projected
Conclusions

• WaveDAQ system has been designed to fulfill needs of MEG II experiment
• System has huge potential for many others (costs: ~130 EUR / channel)
• Status: Crate fully working, trigger board and WaveDREAM board successfully tested, firmware to be finished, DCB under design
• First full crate test end of 2015, full system (35 crates) in 2016
• DRS5 chip (no dead-time) planned for 2017+