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Wet biomass, e.g. agricultural residues, and dry biomass (e.g. wood) are considered playing a
major role in our future sustainable energy supply. Biogenic synthetic natural gas (Bio-SNG) is
particularly interesting as it can be produced with a high efficiency from almost any kind of
biomass applying a proper conversion technology. Hydrothermal processing under supercritical
water (SCW) conditions does not require dry biomass and thus has a great potential for producing
biofuels and bio-chemicals from various types of biomass.

Wet biomass
slurry

At PSI a SCW process was developed, which is operated at temperatures of 400-450°C and
pressures of 25-35 MPa. Presently we feed relatively simple model compounds of wet biomass,
e.g. ethanol or glycerol mixtures for investigating supercritical water gasification (SCWG) [1]. The
process efficiency was determined to be 6615 %, and the residency time is < 10 min. The carbon
gasification is in the order of > 99% and a yield of ~0.33 g CH,/g wood is obtained. As catalyst a
commercial 2wt% Ru/C (activated char coal) proved to be efficient and relatively stable against
the harsh reaction conditions. Aobl
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Introduction Setup‘s and Analysis
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PSI’'s SCW process:
« pre-heating + liquefaction / 300-370 °C:

break-up of cells, decomposition of large bio-polymers

to smaller organic molecules, release of salts and

organically bound hetero-atoms (N, P, S) as inorganic

compounds

« super-heating + salt separation /< 450 °C:
continuous precipitation and recovery of released

salts

« catalytic gasification + methanation / ~ 400 °C:
final conversion to mainly CH, and CO,

« Max. 1Kg/h; Ty =773 K, Py = 35 MPa
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ied analytical methods:

Our research focuses on obtaining an improved insight on the catalyst as well as understanding of
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Gasification experiments:
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Crude Glycerol gasification:

Moving deactivation front in
direction of the mass flow, shift
of the minimum of the fluid
temperature inside the reactor.

Reactor:

— Water efore experiment
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Gasification of pure Glycerol
[ mixtures with salt (K;PO,):

Stable gasification, no shift of
the minimum of the fluid
temperature inside the reactor.
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Literature knowledge [2]:
Ru®: -4.7%/+9.8% mismatch with HOPG lattice
two possible Ru lattices rotated relatively by 30°

Lattice constants:
RuO, 449 nm

2 Graphite = 0.246 nm
Ru(0001) =0.271 nm

HOPG =0.142/0.246 nm
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HAADF-STEM:
Heavy elements (e.g. Ru) appear as
bright contrast

Ru cluster sintering:
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Qualitative and quantitative surface
analysis; analysis depth: ~2 -3 nm
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< Catalyst is working; Ru metal identified as active species
< Deactivation sometimes observable, accompanied by:

» Some Ru sintering + loss of surface area + loss of surface Ru

» Contamination with minor amounts of corrosion products / other elements

» Remarkable changes in the valence band region
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