Methane and Nutrient Salts from Waste Biomass: Development of a Catalytic Conversion Process in Supercritical Water

Andrew Petersona,b,#, Maurice Waldnerb,c, Morgan Frolinga, Frédéric Vogelb, Jefferson Testera

aMassachusetts Institute of Technology, Cambridge, MA, USA.
bPaul Scherrer Institut, Villigen, Switzerland.
cSwiss Federal Institute of Technology, Zurich (ETH-Zurich), Switzerland.

Vision

Synthetic natural gas (SNG) can potentially be produced from biomass (liquid manure, wood) by a hydrothermal process. The hydrothermal route carries two major advantages over conventional gasification:

1. Drying is unnecessary.
2. Nutrient salts are recovered.

Experimental

- Solids content \(\leq 30\%\).
- Batch reactor, Raney nickel catalyst.
- 400\°C, 300 bar. Supercritical.

Results

Gas composition achieved:

![Complete conversion to gases and water](image)

- Thermodynamic equilibrium
- Nickel catalyst
- No catalyst

Ongoing Work

- Salt separation studies in supercritical water.
 - In-situ visualization using neutron radiography.
 - Finite-element modeling of fluid flow and heat transfer.
 - Realization of continuous process.
 - Gasification of liquid model systems with same C-H-O composition in biomass in continuous test rig.
 - Salt separation in continuous fashion, preliminary design.
 - Pumping of real biomass slurry, up to 20\% solids, ground to xD \(\leq 100\) microns.
 - Environmental systems analysis.

Global Warming Potential per 1000 kg Biomass

Example of preliminary results for manure feed.

- Chemical process simulation (ASPEN+) and life-cycle assessment will be used to optimize the environmental performance of the process in a systems perspective.

*Corresponding author. aap@mit.edu. Andrew Peterson, 77 Massachusetts Ave 66-053, Cambridge, MA 02139. 1-617-253-0070.