

METHANE FROM WASTE BIOMASS

PROCESS DEVELOPMENT & ENVIRONMENTAL SYSTEMS ANALYSIS

Jeremy S. Luterbacher¹, Morgan Fröling², Frédéric Vogel³, Francois Maréchal¹ and Jefferson W. Tester⁴ 1Ecole Polytechnique Fédérale de Lausanne ²Chalmers University ³Paul Scherrer Institute ⁴Massachusetts Institute of Technology

Introduction

Biomass feedstocks can efficiently be converted to Bio-Synthetic Natural Gas (bio-SNG) using catalytic supercritical water gasification. Major advantages:

- Fuel can be used in the existing infrastructure
- Use of waste biomass (wet, containing lignocellulosic material)
- Recovery of inorganic material: use as a mineral fertilizer
- No drying or distillation steps

Process modeling and energy integration is used to simulate optimized Swiss industrial scale scenarios for manure and wood chips; life cycle assessment is used to assess the associated environmental impacts

Results

internal

needs

Rankine

Experimental

Wood before and after processing (complete gasification). Gas composition: 49 vol% CH4, 43 vol% CO₂ and 8 vol% H₂¹.

Process modeling

Scenarios investigated: large-scale manure (rail transport, 16 Mtons of manure/year), small-scale manure (no longrange transport, 0.54 Mtons/year), wood (truck transport, 0.14 Mtons/year)

Balance type	Form	Useful Energy [MW]						Process efficiency
		Manure (Large-scale)		Manure (Small-scale)		Wood		(LHV basis) fo
		Turbine	Burner	Turbine	Burner	Turbine	Burner	different
Consumption	Biomass	251	251	8.37	8.37	50	50	production
Production	SNG	118	155	3.94	5.18	22.8	35.6	scenarios and fo
	Electricity	14.8	2.6	0.58	-0.020	4.8	1.7	
	Total	133	158	4.52	5.16	27.6	37.3	the different hea
Efficiency	Chemical	0.47	0.62	0.47	0.62	0.46	0.71	generation
	Total	0.53	0.63	0.54	0.62	0.55	0.75	scenarios (turbine
								or burner)

Life cvcle assessment

Primary fossil energy source	Imbedded fos	il energy [%]	Imbedded fossil energy for	
	Manure	Wood	the large-scale manure	
Crude oil	6.5	5.0	(practically identical to the	
Natural gas	1.8	1.6	small-scale) and the wood	
Coal	2.6	2.1	- conversion processes	
Total	10.8	8.7	conversion processes	

The global warming potential is calculated for the modeled scenarios and benchmarked toward concurrent processes (anaerobic digestion of manure and conventional wood gasification)

Conclusions

Process modeling - Meeting internal heat requirements is done most efficiently using a burner + Rankine steam cycle. Thermal efficiencies of 60% are obtained for manure and of 75% for wood

LCA - About 10% Imbedded fossil energy for the supercritical water gasification processes; in comparison, the US corn grain to ethanol process has over 40% of imbedded fossil energy just in the form of natural gas².

Avoiding emissions from spread manure \Rightarrow very beneficial for manure. Carbon footprint is of -0.6 Kg CO_{2.ea}/_{MJ BIO-SNG}.

Treating a waste and reducing the emissions associated to its use \Rightarrow a strong environmental performance for the manure conversion processes .

¹M. Waldner and F. Vogel: Renewable Production of methane from woody Biomass by Catalytic Hydrothermal Gasification", Ind. Eng. Chem. Res., 44, 2005.

²J. Johnson: "Technology assessment of Biomass Energy: A multi-objective, life cycle approach unde uncertainty" Doctoral Thesis, MIT 2006