Approximate crystal and magnetic structures of MnS below Néel temperature
single propagation vector $\mathrm{k}=[\mathrm{I} / 2, \mathrm{I} / 2, \mathrm{I} / 2]$

cubic, Fm-3m: Mn-atom in (000),
 three other Mn-atoms are generated by F-centering translations

Scattering from magnetic structure with propagation vector k

In ND experiment we measure correlators of Fourier transform of magnetic lattice

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega} \propto(\underset{\sim}{(q)}) \cdot \mathbf{F}^{*}(\mathbf{q})+ \\
& \text { structure factor } \\
&) \cdot \delta(\mathbf{H} \pm \mathbf{k}-\mathbf{q}) \\
& \text { |Bragg peak at } \\
& \mathbf{q}=\mathbf{H} \mp \mathbf{k} \\
& \mathbf{F}(\mathbf{q}) \propto \sum_{j} \mathbf{S}_{0 \perp j} \cdot \exp \left(i \mathbf{q} \mathbf{r}_{j}\right)
\end{aligned}
$$

Practicum problems

MAGNETIC ORDER IN MnS

5. Practical course at SINQ

5.1 Manganese sulfide MnS

- rock salt crystal structure
- ionic crystal: $\mathrm{Mn}^{2+}, \mathrm{S}^{2-}$
- lattice constant $\mathrm{a}=5.199 \AA$ At $\mathrm{T}=4.2 \mathrm{~K}$
- space group $F m \overline{3} m$
- electronic configuration of $\mathrm{Mn}^{2+}: 3 \mathrm{~d}^{5}$
- Néel temperature $\mathrm{T}_{\mathrm{N}}=161 \mathrm{~K}$
- long-range antiferromagnetic order: antiferromagnetic stacking along (111) of ferromagnetic planes
- therefore doubling of the magnetic unit cell with respect to the crystallographic unit cell

Task 1: positions of nuclear Bragg peaks, indexing of the peaks

5.2 Neutron diffraction of MnS at room temperature

$\lambda=2 d_{h k l} \sin \theta_{h k l}$
Bragg law

λ : neutron wavelength, $d_{h k l}$: d-spacing of scattering plane $h k l$
$\theta_{h k l}$: (half) scattering angle of reflection $h k l$ in diffraction pattern

$$
\begin{equation*}
d_{h k l}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} \tag{2}
\end{equation*}
$$

a : cubic lattice constant, h, k, l indices of scattering plane
$\vec{\tau}_{h k l}=\frac{2 \pi}{a}(h, k, l) \quad \vec{\tau}_{\text {hie }} \equiv \overrightarrow{\#}$
corresponding vector in reciprocal space: a node of reciprocal lattice

Tasks:

$$
\rightarrow T_{N} \simeq 150 \mathrm{~K}
$$

- - measure a diffraction pattern of MnS at $\mathrm{T}=300 \mathrm{~K}$ in the paramagnetic state

* -determine peak positions Θ, d-spacings and indices (h, k, l) for aH observed peaks

Coherent elastic cross section for nuclear neutron diffraction:

$$
\frac{d \sigma}{d \Omega} \sim \sum_{\vec{\tau}_{h k l}}\left|F_{\vec{\tau}_{h k l}}\right|^{2} \underbrace{\delta\left(\vec{Q}-\vec{\tau}_{h k l}\right)} \quad(4) \quad \vec{Q}=\vec{\tau}_{h k l} \quad|\vec{Q}|=\frac{4 \pi \sin \theta}{\lambda}
$$

\vec{Q} : scattering vector, $\vec{\tau}_{h k l}$: reciprocal lattice vector defining scattering planes

All the calculations/fits of experimental integrated intensities and peak positions will be done with 'fit' program under HRPT linux-computer

Task 2a: Calculation of structure factors and Bragg peak intensities and comparison with experiment

Coherent elastic cross section for nuclear neutron diffraction:

$$
\begin{align*}
\frac{d \sigma}{d \Omega} \sim & \sum_{\vec{\tau}_{h k l}}\left|F_{\vec{\tau}_{h k l}}\right|^{2} \underbrace{\delta\left(\vec{Q} \vec{\tau}_{h k l}\right)}_{\vec{Q}: \text { scattering vector, } \vec{\tau}_{h k l}: \text { reciprocal lattice vector defining scattering planes }} \quad\left|\vec{Q}=\vec{\tau}_{h k l} \quad\right| \vec{Q} \left\lvert\,=\frac{4 \pi \sin \theta}{\lambda}\right. \\
& \delta\left(\vec{Q}-\vec{\tau}_{h k l}\right) \rightarrow \text { peak position given by crystal lattice (unit cell) } \\
& F_{\vec{\tau}_{h k l}}: \text { structure factor of unit cell }
\end{align*}
$$

$/$
\vec{d}_{i} : atomic coordinate of i-th atom in real space, sum runs over all atoms in unit cell $b_{\vec{d}_{i}}$: scattering length of atom at position \vec{d}_{i}

Intensity $\sim\left|F_{\vec{\tau}_{h k l}}\right|^{2} \rightarrow$ peak intensity is mainly given by arrangement of atoms in unit cell
The
sum

For Mn:

$$
b_{M n}=-3.73 \mathrm{fm}, b_{S}=2.85 \mathrm{fm}
$$

$$
1 \mathrm{f}_{\mathrm{m}}=10^{-13} \mathrm{~cm}=10^{-15} \mathrm{~m}
$$

\vec{d}-vectors:

$$
\begin{array}{lll}
\text { Mn: } & \vec{d}_{1}=a(0,0,0) & \vec{d}_{2}=a(0,1 / 2,1 / 2) \\
\text { s: } & \vec{d}_{3}=a(1 / 2,0,1 / 2) & \vec{d}_{4}=a(1 / 2,1 / 2,0) \\
d_{5}=a(1 / 2,1 / 2,1 / 2) & \vec{d}_{6}=a(1 / 2,0,0) \\
& \text { F -centering. } & (8) \\
\vec{d}_{7}=a(0,1 / 2,0) & \vec{d}_{8}=a(0,0,1 / 2)
\end{array}
$$

Task 2b: Calculation of structure factors and Bragg peak intensities and comparison with experiment

For cylindrical geometry of the powder sample container the integrated intensity of the scattered neutrons of the Bragg peak at $|\vec{Q}|$ is given by
$I(Q)=C \cdot A(\theta) \cdot L(\theta) \cdot \frac{d \sigma}{d \Omega}=C \cdot A(\theta) \cdot L(\theta) \cdot|F(Q)|^{2} \cdot m u l t$
assume: $A(\theta) \simeq 1$

C: scale factor, $A(\theta)$: absorption factor, $L(\theta)$: Lorentz factor, milt: multiplicity

$$
\begin{equation*}
L(\theta)=\frac{1}{\sin \theta \sin 2 \theta} \tag{7}
\end{equation*}
$$

The Lorentz factor $L(\theta)$ is a geometrical correction depending on the scattering geometry.

Task 3: Indexing of the magnetic Bragg peaks. Calculation of magnetic structure factors and determination of the value and direction of the Mn-spins.
5.3 Neutron diffraction of MnS in the magnetically ordered state
(3)

Tasks: or Cower T

- measure a neutron diffraction pattern of MnS at $\mathrm{T}=50 \mathrm{~K}$ in the magnetically ordered state
- compare this date with the paramagnetic pattern at room temperature

$$
\text { first } 3
$$

- index the magnetic peaks, ie. find (h, k, l) for each magnetic peak
- based on the indices, what is the magnetic unit cell compared to the crystallographic one
- using eq. (6) for (111)-peak and

$$
\begin{aligned}
& \text { eq. (6) for (111)-peak and } \\
& \text { eq. (10) for }\left(\frac{1}{2} \frac{1}{2} \frac{1}{2}\right) \text { magnetic peak determine } \vec{\mu} \text {. }
\end{aligned}
$$

Consider $\bar{\mu} \|(111)$ in calcrelations

- Which direction of $\bar{\mu}$ can be excluded?

Task 3: Indexing of the magnetic Bragg peaks. Calculation of magnetic structure factors and determination of the value and direction of the Mn-spins.

Coherent elastic cross section for
antiferromagnetic order

$$
\frac{d \sigma}{d \Omega} \sim \sum_{\tau_{M, h k l}}\left|F_{M, h k l}\right|^{2} \delta\left(\vec{Q}-\vec{\tau}_{M, h k l}\right)
$$

$F_{M, h k l}$: antiferromagnetic structure factor
Formula (10) is actually formula (6) with $\left|\bar{F}_{M 1}\right|$ instead of $|F|^{2}$ with the same scale factor G

The intensity of the magnetic Bragg peak at $\left|\vec{Q}_{M}\right|$ is

$$
I\left(Q_{M}\right)=C \cdot A(\theta) \cdot L(\theta) \cdot\left|F_{M \perp}\right|^{2} \cdot m u l t \quad(10) \quad A(\theta)=1
$$

multiplicity is 2 for $\left(\frac{1}{2} \frac{1}{2} \frac{1}{2}\right)$ peak.
$\vec{F}_{M \perp}=\frac{1}{2} r_{0} \sum_{j=1}^{4} e^{i \vec{Q}_{M} \cdot \vec{d}_{j}} \vec{\mu}_{j \perp}(11)$ and $\quad \vec{\mu}_{\perp}=\left(\vec{\mu}-\frac{\vec{Q}_{M}\left(\vec{\mu} \cdot \vec{Q}_{M}\right)}{Q_{M}{ }^{2}}\right) \quad$ (12)
Can you explain why?
where $\vec{\mu}$ is the magnetic moment in units μ_{B} and $r_{0}=-0.54 \cdot 10^{-12} \mathrm{~cm}, \vec{Q}_{M} \equiv \vec{\tau}_{M, h k l}$
The sum runs over M_{n}-atoms.
$\vec{\mu}_{1} \nabla_{\Downarrow} \vec{\mu}_{2,3,4}$ Can you explain why?

